skimage图像处理(五)

多数量图像处理(批量化处理)

多数量图片内读取指定图片

首先导入skimage.io模块并将其简称为io,导入skimage库中的data_dir模块,用于获取示例图像的目录路径

import skimage.io as io

from skimage import data_dir

构建一个字符串,表示要匹配的文件模式,这里假设data_dir包含示例图像

使用io.ImageCollection创建一个集合,包含data_dir目录下所有匹配str模式的图像

str=data_dir + '/*.png'

coll = io.ImageCollection(str)

打印集合中图像的数量,使用io.imshow显示集合中第三个图像

print(len(coll))

io.imshow(coll[2]) #集合中第一张图片为0

显示效果:

批量读取目录中的所有.jpg文件

批量读取目录中的所有.jpg文件,并将它们转换为灰度图像,使用io.imshow显示集合中第一个图像。

导入skimage.io模块,用于图像读取,导入skimage库中的color模块,用于颜色处

from skimage import data_dir, io, color

定义一个函数convert_gray,用于将图像转换为灰度图,使用io.imread读取图像,使用color.rgb2gray将RGB图像转换为灰度图像

def convert_gray(f):

rgb = io.imread(f)

return color.rgb2gray(rgb)

定义一个字符串,表示要匹配的文件模式,这里假设img包含图像文件路径

img = r"C:\Users\AAA\Desktop\新建文件夹"

使用io.ImageCollection创建一个集合,包含img目录下所有匹配str模式的图像,打印集合中图像的数量

str = img + '/*.jpg'

coll = io.ImageCollection(str, load_func=convert_gray)

print(len(coll))

使用io.imshow显示集合中第一个图像

io.imshow(coll[0])

显示效果:

图像批量处理在视频中引用

将SP.mp4这个视频中每隔10帧的图片读取出来,放在图片集合中(视频应用自己的视频时请改变路径其余代码不变)

导入cv2库用于视频处理,skimage.io用于图像读取,os库用于文件操作

import cv2

from skimage import io

import os

定义了一个名为AVILoader的类,该类用于从视频文件中加载帧,并将其转换为RGB格式。这个类实现了__call__方法,使其可以作为函数调用。

class AVILoader:

def init(self, video_file):

self.video_file = video_file

self.cap = cv2.VideoCapture(self.video_file)

def call(self, frame):

self.cap.set(cv2.CAP_PROP_POS_FRAMES, frame)

ret, frame = self.cap.read()

if ret:

return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

else:

return None

定义视频文件路径,创建一个AVILoader对象

video_file =r"C:\Users\AAA\Desktop\1\SP.mp4"

av_loader = AVILoader(video_file)

定义要提取的帧的范围,这里从0开始,每3帧提取一次,共提取4帧

frames = range(0, 12, 3)

定义输出文件夹路径

output_folder = 'frames'

创建输出文件夹,如果已存在则不报错

os.makedirs(output_folder, exist_ok=True)

保存每一帧为图像文件

for frame in frames:

img = av_loader(frame)

if img is not None:

filename = os.path.join(output_folder, f'frame_{frame}.jpg')

io.imsave(filename, img)

io.imshow(img) # 显示图像

io.show() # 显示图像窗口

创建图像集合

ic = io.ImageCollection(os.path.join(output_folder, '*.jpg'))

import cv2

from skimage import io

import os

创建AVILoader类

class AVILoader:

def init(self, video_file):

self.video_file = video_file

self.cap = cv2.VideoCapture(self.video_file)

def call(self, frame):

self.cap.set(cv2.CAP_PROP_POS_FRAMES, frame)

ret, frame = self.cap.read()

if ret:

return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

else:

return None

video_file =r"C:\Users\AAA\Desktop\1\SP.mp4"

av_loader = AVILoader(video_file)

frames = range(0, 12, 3)

output_folder = 'frames'

os.makedirs(output_folder, exist_ok=True)

#保存每一帧为图像文件

for frame in frames:

img = av_loader(frame)

if img is not None:

filename = os.path.join(output_folder, f'frame_{frame}.jpg')

io.imsave(filename, img)

io.imshow(img) # 显示图像

io.show() # 显示图像窗口

创建图像集合

ic = io.ImageCollection(os.path.join(output_folder, '*.jpg'))

显示效果:(可上下滑动显示)

依次读取rgb图片并转换为灰度图,将jpg形式转换为png形式保存在文件夹内

最后保存显示为所取图片的灰度化png形式图像

from skimage import data_dir,io,transform,color

import numpy as np

def convert_grey(f):

rgb=io.imread(f) #依次读取rgb图片

grey=color.rgb2grey(rgb) #将rgb图片转换成灰度图

dst=transform.resize(grey,(256,256)) #将灰度图片大小转换为256*256

return dst

img='C:/Users/AAA/Desktop/1'

str=img+'/*.jpg'

coll = io.ImageCollection(str,load_func=convert_gray)

for i in range(len(coll)):

循环保存图片

io.imsave('C:/Users/AAA/Desktop/1/'+np.str(i)+'.png',coll[i])

效果显示:

出现这种红色提示为正常现象

最后文件夹内显示效果如下

图像变形与缩放

改变图像尺寸

改变新图像尺寸为resize(200,200),函数格式如下skimage.transform.resize(image, output_shape)

image为需要改变尺寸的图片,output_shape为新的图片尺寸

导入transform模块用于图像大小调整,以及matplotlib的pyplot模块用于图像显示

from skimage import transform

import matplotlib.pyplot as plt

读取图像,使用transform.resize调整图像大小为200x200像素,创建一个新的图像窗口,命名为'resize'

img =io.imread('c.jpg')

dst=transform.resize(img, (200, 200))

plt.figure('resize')

在当前图像窗口中创建一个新的子图,位于1行2列的第1个位置,在当前子图上添加标题'before resize',使用imshow显示图像img,并使用plt.cm.gray灰度

plt.subplot(1,2,1)

plt.title('before resize')

plt.imshow(img,plt.cm.gray)

在当前图像窗口中创建一个新的子图,位于1行2列的第2个位置,在当前子图上添加标题'before resize',使用imshow显示图像img,并使用plt.cm.gray灰度

plt.subplot(1,2,2)

plt.title('before resize')

plt.imshow(dst,plt.cm.gray)

plt.show()

显示效果:

按比例缩放图像

from skimage import transform,data,io

img =io.imread('c.jpg')

print(img.shape) #图片原始大小

print(transform.rescale(img, 0.5).shape) #缩小为原来图片大小的0.5倍

print(transform.rescale(img, [0.2,0.25,0.2]).shape) #缩小为原来图片行数一半,列数四分之一,位置一半

print(transform.rescale(img, 3).shape) #放大为原来图片大小的3倍

io.imshow(img) #显示图像

显示效果:

图像旋转

函数格式skimage.transform.rotate(image, angle[, ...],resize=False)

from skimage import transform,data,io

import matplotlib.pyplot as plt

img = io.imread('c.jpg')

print(img.shape) #图片原始大小

img1=transform.rotate(img, 60) #旋转60度,不改变大小

print(img1.shape)

img2=transform.rotate(img, 30,resize=True) #旋转30度,同时改变大小

print(img2.shape)

plt.figure('resize')

plt.subplot(1,2,1)

plt.title('rotate 60')

plt.imshow(img1,plt.cm.gray)

plt.subplot(1,2,2)

plt.title('rotate 30')

plt.imshow(img2,plt.cm.gray)

plt.show()

显示效果:

相关推荐
格林威31 分钟前
AOI在风电行业制造领域中的应用
人工智能·数码相机·计算机视觉·视觉检测·制造·机器视觉·aoi
禁默2 小时前
第四届图像处理、计算机视觉与机器学习国际学术会议(ICICML 2025)
图像处理·机器学习·计算机视觉
唯道行3 小时前
计算机图形学·9 几何学
人工智能·线性代数·计算机视觉·矩阵·几何学·计算机图形学
Antonio9153 小时前
【图像处理】tiff格式介绍
图像处理·人工智能
Antonio9153 小时前
【图像处理】png 格式详解
图像处理
AndrewHZ3 小时前
【图像处理基石】什么是alpha matting?
图像处理·人工智能·计算机视觉·matting·发丝分割·trimap·人像模式
这张生成的图像能检测吗5 小时前
(综述)基于深度学习的制造业表面缺陷检测图像合成方法综述
人工智能·计算机视觉·图像生成·工业检测·计算机图像学
AI纪元故事会13 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
音视频牛哥14 小时前
SmartMediaKit:如何让智能系统早人一步“跟上现实”的时间架构--从实时流媒体到系统智能的演进
人工智能·计算机视觉·音视频·音视频开发·具身智能·十五五规划具身智能·smartmediakit
音视频牛哥15 小时前
超清≠清晰:视频系统里的分辨率陷阱与秩序真相
人工智能·机器学习·计算机视觉·音视频·大牛直播sdk·rtsp播放器rtmp播放器·smartmediakit