[论文阅读]FINE-TUNE THE PRETRAINED ATST MODEL FOR SOUND EVENT DETECTION

摘要

本研究提出了一种微调预训练模型ATST(音频师生转换模型)的方法,用于声音事件检测(SED)。通过引入ATST-Frame模型,该方法在DCASE挑战任务4数据集上取得了新的SOTA结果,有效解决了预训练模型在声音事件检测中过拟合的问题。

主要内容

1.背景介绍

  • 声音事件检测(SED)旨在检测音频流中的声音事件并标注其发生时间。
  • 由于数据标注成本高,SED系统常面临数据不足的问题。
  • 现有的SED系统引入了自监督学习(SelfSL)模型以缓解这一问题,但大多数系统将预训练模型视为冻结的特征提取器,微调预训练模型的研究较少。

2.研究目标

研究和提出一种微调预训练模型的方法,用于提高SED性能。
3.方法介绍

  • 基线系统:DCASE2023挑战任务4的基线系统采用了预训练的BEATs模型与CRNN(卷积循环神经网络)结合,提供了全局频谱特征。
  • 新模型:提出了ATST-Frame模型,专为学习音频信号的帧级表示设计,并在多个下游任务中获得了SOTA性能。
  • 微调策略:提出了一种两阶段的微调方法:
    第一阶段:冻结ATST-Frame模型,训练CRNN。
    第二阶段:联合微调ATST-Frame和CRNN,主要依赖无监督损失以避免过拟合。

4.实验结果

  • 数据集:使用DESED数据集进行实验,包含弱标注、强标注和未标注数据。
  • 结果比较:提出的ATST-SED模型在DCASE2023挑战任务4数据集上取得了新的SOTA结果,超过了现有的SED系统。
  • 消融研究:各个模块对模型性能均有积极影响,且相互兼容。 结论

提出的方法显著提高了SED性能,并可能适用于其他预训练模型,形成一种新的自监督学习模型训练范式。

5.个人理解

  • 参考基线系统:作者参考了DCASE2023挑战任务4的基线系统,该系统使用了预训练的BEATs模型与CRNN结合,用于声音事件检测(SED)。基线系统中的预训练模型(BEATs)作为特征提取器使用,在SED任务中提供了全局频谱特征。
  • 提出新模型ATST-SED:作者提出了一种新的自监督学习(SelfSL)模型,名为ATST-Frame,并将其应用于SED系统,构建了ATST-SED模型。与BEATs相比,ATST-Frame在帧级表示上具有更高的时间分辨率和更好的性能。
  • 从下表中可以看出微调的提升效果更显著。同时也可以看出使用额外的数据也有一定的提升,但主要的贡献还是微调策略的影响。

    下表可以看出微调策略对效果的影响。
相关推荐
土豆.exe4 分钟前
IfAI v0.3.0 - 从“文本“到“多模态“的感知升级
人工智能·编辑器
JicasdC123asd6 分钟前
如何使用YOLOv10n进行台风灾害区域识别与分类——基于改进的HAFB-2模型实现
人工智能·yolo·分类
Xの哲學12 分钟前
Linux SKB: 深入解析网络包的灵魂
linux·服务器·网络·算法·边缘计算
抖知书17 分钟前
喂饭级AI提示词公开!帮短视频创作者写脚本大纲
人工智能
Elastic 中国社区官方博客18 分钟前
JINA AI 与 Elasticsearch 的集成
大数据·人工智能·elasticsearch·搜索引擎·全文检索·jina
cui__OaO22 分钟前
Linux内核--基于正点原子IMX6ULL开发板的内核移植
linux·嵌入式
我想发发发23 分钟前
Linux实现虚拟串口通信-socat
linux·运维·服务器
高洁0126 分钟前
AI智能体搭建(3)
人工智能·深度学习·算法·数据挖掘·知识图谱
济61732 分钟前
linux 系统移植(第五期)--Uboot移植(4)--在U-Boot 中添加自己的开发板(4) -其他需要修改的地方-- Ubuntu20.04
linux·运维·服务器
道可云39 分钟前
道可云人工智能每日资讯|南宁市公布第二批“人工智能+制造”应用场景“机会清单”和“能力清单”
人工智能·制造