[论文阅读]FINE-TUNE THE PRETRAINED ATST MODEL FOR SOUND EVENT DETECTION

摘要

本研究提出了一种微调预训练模型ATST(音频师生转换模型)的方法,用于声音事件检测(SED)。通过引入ATST-Frame模型,该方法在DCASE挑战任务4数据集上取得了新的SOTA结果,有效解决了预训练模型在声音事件检测中过拟合的问题。

主要内容

1.背景介绍

  • 声音事件检测(SED)旨在检测音频流中的声音事件并标注其发生时间。
  • 由于数据标注成本高,SED系统常面临数据不足的问题。
  • 现有的SED系统引入了自监督学习(SelfSL)模型以缓解这一问题,但大多数系统将预训练模型视为冻结的特征提取器,微调预训练模型的研究较少。

2.研究目标

研究和提出一种微调预训练模型的方法,用于提高SED性能。
3.方法介绍

  • 基线系统:DCASE2023挑战任务4的基线系统采用了预训练的BEATs模型与CRNN(卷积循环神经网络)结合,提供了全局频谱特征。
  • 新模型:提出了ATST-Frame模型,专为学习音频信号的帧级表示设计,并在多个下游任务中获得了SOTA性能。
  • 微调策略:提出了一种两阶段的微调方法:
    第一阶段:冻结ATST-Frame模型,训练CRNN。
    第二阶段:联合微调ATST-Frame和CRNN,主要依赖无监督损失以避免过拟合。

4.实验结果

  • 数据集:使用DESED数据集进行实验,包含弱标注、强标注和未标注数据。
  • 结果比较:提出的ATST-SED模型在DCASE2023挑战任务4数据集上取得了新的SOTA结果,超过了现有的SED系统。
  • 消融研究:各个模块对模型性能均有积极影响,且相互兼容。 结论

提出的方法显著提高了SED性能,并可能适用于其他预训练模型,形成一种新的自监督学习模型训练范式。

5.个人理解

  • 参考基线系统:作者参考了DCASE2023挑战任务4的基线系统,该系统使用了预训练的BEATs模型与CRNN结合,用于声音事件检测(SED)。基线系统中的预训练模型(BEATs)作为特征提取器使用,在SED任务中提供了全局频谱特征。
  • 提出新模型ATST-SED:作者提出了一种新的自监督学习(SelfSL)模型,名为ATST-Frame,并将其应用于SED系统,构建了ATST-SED模型。与BEATs相比,ATST-Frame在帧级表示上具有更高的时间分辨率和更好的性能。
  • 从下表中可以看出微调的提升效果更显著。同时也可以看出使用额外的数据也有一定的提升,但主要的贡献还是微调策略的影响。

    下表可以看出微调策略对效果的影响。
相关推荐
cui_win3 分钟前
【内存】Linux 内核优化实战 - net.ipv4.tcp_tw_reuse
linux·网络·tcp/ip
ai_xiaogui4 分钟前
一键部署AI工具!用AIStarter快速安装ComfyUI与Stable Diffusion
人工智能·stable diffusion·部署ai工具·ai应用市场教程·sd快速部署·comfyui一键安装
Tipriest_10 分钟前
Python关键字梳理
python·关键字·keyword
聚客AI1 小时前
Embedding进化论:从Word2Vec到OpenAI三代模型技术跃迁
人工智能·llm·掘金·日新计划
weixin_387545641 小时前
深入解析 AI Gateway:新一代智能流量控制中枢
人工智能·gateway
im_AMBER1 小时前
学习日志05 python
python·学习
大虫小呓2 小时前
Python 处理 Excel 数据 pandas 和 openpyxl 哪家强?
python·pandas
聽雨2372 小时前
03每日简报20250705
人工智能·社交电子·娱乐·传媒·媒体
哪 吒2 小时前
2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
python·算法·华为od·华为od机试·2025b卷
二川bro2 小时前
飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
java·人工智能·重构