使用FP8加速PyTorch训练的两种方法总结

在PyTorch中,FP8(8-bit 浮点数)是一个较新的数据类型,用于实现高效的神经网络训练和推理。它主要被设计来降低模型运行时的内存占用,并加快计算速度,同时尽量保持训练和推理的准确性。虽然PyTorch官方在标准发布中尚未全面支持FP8,但是在2.2版本中PyTorch已经包含了对FP8的"有限支持"并且出现了2个新的变量类型,

torch.float8_e4m3fn

torch.float8_e5m2

,而H100也支持这种类型,所以这篇文章我们就来介绍如何使用FP8来提高训练效率

模型架构

我们定义了一个Vision Transformer (ViT)支持的分类模型(使用流行的timm Python包版本0.9.10)以及一个随机生成的数据集。我们选择了ViT-Huge的有6.32亿个参数的最大的模型,这样可以演示FP8的效果。

 import torch, time
 import torch.optim
 import torch.utils.data
 import torch.distributed as dist
 from torch.nn.parallel.distributed import DistributedDataParallel as DDP
 import torch.multiprocessing as mp
 
 # modify batch size according to GPU memory
 batch_size = 64
 
 from timm.models.vision_transformer import VisionTransformer
 
 from torch.utils.data import Dataset
 
 
 # use random data
 class FakeDataset(Dataset):
     def __len__(self):
         return 1000000
 
     def __getitem__(self, index):
         rand_image = torch.randn([3, 224, 224], dtype=torch.float32)
         label = torch.tensor(data=[index % 1000], dtype=torch.int64)
         return rand_image, label
 
 
 def mp_fn(local_rank, *args):
     # configure process
     dist.init_process_group("nccl",
                             rank=local_rank,
                             world_size=torch.cuda.device_count())
     torch.cuda.set_device(local_rank)
     device = torch.cuda.current_device()
     
     # create dataset and dataloader
     train_set = FakeDataset()
     train_loader = torch.utils.data.DataLoader(
         train_set, batch_size=batch_size,
         num_workers=12, pin_memory=True)
 
     # define ViT-Huge model
     model = VisionTransformer(
             embed_dim=1280,
             depth=32,
             num_heads=16,
         ).cuda(device)
     model = DDP(model, device_ids=[local_rank])
 
     # define loss and optimizer
     criterion = torch.nn.CrossEntropyLoss()
     optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
 
     model.train()
 
     t0 = time.perf_counter()
     summ = 0
     count = 0
 
     for step, data in enumerate(train_loader):
         # copy data to GPU
         inputs = data[0].to(device=device, non_blocking=True)
         label = data[1].squeeze(-1).to(device=device, non_blocking=True)
   
         # use mixed precision to take advantage of bfloat16 support
         with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
             outputs = model(inputs)
             loss = criterion(outputs, label)
         optimizer.zero_grad(set_to_none=True)
         loss.backward()
         optimizer.step()
         
         # capture step time
         batch_time = time.perf_counter() - t0
         if step > 10:  # skip first steps
             summ += batch_time
             count += 1
         t0 = time.perf_counter()
         if step > 50:
             break
     print(f'average step time: {summ/count}')
 
 
 if __name__ == '__main__':
     mp.spawn(mp_fn,
              args=(),
              nprocs=torch.cuda.device_count(),
              join=True)

Transformer Engine

PyTorch(版本2.1)不包括FP8的数据类型。所以我们需要通过第三方的库Transformer Engine (TE),这是一个用于在NVIDIA gpu上加速Transformer模型的专用库。

使用FP8要比16float16和bfloat16复杂得多。这里我们不用关心细节,因为TE都已经帮我们实现了,我们只要拿来用就可以了。

但是需要对我们上面的模型进行一些简单的修改,需要将transformer变为TE的专用transformer层

 import transformer_engine.pytorch as te
 from transformer_engine.common import recipe
 
 
 class TE_Block(te.transformer.TransformerLayer):
     def __init__(
             self,
             dim,
             num_heads,
             mlp_ratio=4.,
             qkv_bias=False,
             qk_norm=False,
             proj_drop=0.,
             attn_drop=0.,
             init_values=None,
             drop_path=0.,
             act_layer=None,
             norm_layer=None,
             mlp_layer=None
     ):
         super().__init__(
             hidden_size=dim,
             ffn_hidden_size=int(dim * mlp_ratio),
             num_attention_heads=num_heads,
             hidden_dropout=proj_drop,
             attention_dropout=attn_drop
             )

然后修改VisionTransformer初始化使用自定义层:

   model = VisionTransformer(
       embed_dim=1280,
       depth=32,
       num_heads=16,
       block_fn=TE_Block
       ).cuda(device)

最后一个修改是用te包裹模型前向传递。Fp8_autocast上下文管理器。此更改需要支持FP8的GPU:

 with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
     with te.fp8_autocast(enabled=True):
         outputs = model(inputs)
     loss = criterion(outputs, label)

下面我们就可以测试结果:

可以看到,使用TE块提高了p4d(~19%)和p5(~32%)的性价比。使用FP8可将p5上的性能额外提高约20%。在TE和FP8优化之后,基于h100的p5.48large的性价比优于基于a100的p4d.24large 。并且训练速度提高了3倍。

Pytorch的原生FP8

在2.2版本后,pytorch原生FP8支持已经是"有限支持"了,所以我们可以先学习一下如何使用了。

 import torch
 from tabulate import tabulate
 
 f32_type = torch.float32
 bf16_type = torch.bfloat16
 e4m3_type = torch.float8_e4m3fn
 e5m2_type = torch.float8_e5m2
 
 # collect finfo for each type
 table = []
 for dtype in [f32_type, bf16_type, e4m3_type, e5m2_type]:
     numbits = 32 if dtype == f32_type else 16 if dtype == bf16_type else 8
     info = torch.finfo(dtype)
     table.append([info.dtype, numbits, info.max, 
                   info.min, info.smallest_normal, info.eps])
 
 headers = ['data type', 'bits', 'max', 'min', 'smallest normal', 'eps']
 print(tabulate(table, headers=headers))
 
 '''
 Output:
 
 data type      bits          max           min  smallest normal          eps
 -------------  ----  -----------  ------------  ---------------  -----------
 float32          32  3.40282e+38  -3.40282e+38      1.17549e-38  1.19209e-07
 bfloat16         16  3.38953e+38  -3.38953e+38      1.17549e-38    0.0078125
 float8_e4m3fn     8          448          -448         0.015625        0.125
 float8_e5m2       8        57344        -57344      6.10352e-05         0.25
 '''

我们可以通过在张量初始化函数中指定dtype来创建FP8张量,如下所示:

 device="cuda"
 e4m3 = torch.tensor(1., device=device, dtype=e4m3_type)
 e5m2 = torch.tensor(1., device=device, dtype=e5m2_type)

也可以强制转换为FP8。在下面的代码中,我们生成一个随机的浮点张量,并比较将它们转换为四种不同的浮点类型的结果:

 x = torch.randn(2, 2, device=device, dtype=f32_type)
 x_bf16 = x.to(bf16_type)
 x_e4m3 = x.to(e4m3_type)
 x_e5m2 = x.to(e5m2_type)
 
 print(tabulate([['float32', *x.cpu().flatten().tolist()],
                 ['bfloat16', *x_bf16.cpu().flatten().tolist()],
                 ['float8_e4m3fn', *x_e4m3.cpu().flatten().tolist()],
                 ['float8_e5m2', *x_e5m2.cpu().flatten().tolist()]],
                headers=['data type', 'x1', 'x2', 'x3', 'x4']))
 
 '''
 The sample output demonstrates the dynamic range of the different types:
 
 data type                  x1              x2              x3              x4
 -------------  --------------  --------------  --------------  --------------
 float32        2.073093891143  -0.78251332044  -0.47084918620  -1.32557279110
 bfloat16       2.078125        -0.78125        -0.4707031      -1.328125
 float8_e4m3fn  2.0             -0.8125         -0.46875        -1.375
 float8_e5m2    2.0             -0.75           -0.5            -1.25
 -------------  --------------  --------------  --------------  --------------
 '''

虽然创建FP8张量很容易,但FP8张量上执行一些基本的算术运算是不支持的。并且需要特定的函数,比如torch._scaled_mm来进行矩阵乘法。

 output, output_amax = torch._scaled_mm(
         torch.randn(16,16, device=device).to(e4m3_type),
         torch.randn(16,16, device=device).to(e4m3_type).t(),
         bias=torch.randn(16, device=device).to(bf16_type),
         out_dtype=e4m3_type,
         scale_a=torch.tensor(1.0, device=device),
         scale_b=torch.tensor(1.0, device=device)
     )

那么如何进行模型的训练呢,我们来做一个演示

 import torch
 from timm.models.vision_transformer import VisionTransformer
 from torch.utils.data import Dataset, DataLoader
 import os
 import time
 
 #float8 imports
 from float8_experimental import config
 from float8_experimental.float8_linear import Float8Linear
 from float8_experimental.float8_linear_utils import (
     swap_linear_with_float8_linear,
     sync_float8_amax_and_scale_history
 )
 
 #float8 configuration (see documentation)
 config.enable_amax_init = False
 config.enable_pre_and_post_forward = False
 
 # model configuration controls:
 fp8_type = True # toggle to change floating-point precision
 compile_model = True # toggle to enable model compilation
 batch_size = 32 if fp8_type else 16 # control batch size
 
 device = torch.device('cuda')
 
 # use random data
 class FakeDataset(Dataset):
     def __len__(self):
         return 1000000
     def __getitem__(self, index):
         rand_image = torch.randn([3, 256, 256], dtype=torch.float32)
         label = torch.tensor(data=[index % 1024], dtype=torch.int64)
         return rand_image, label
 
 # get data loader
 def get_data(batch_size):
     ds = FakeDataset()
     return DataLoader(
            ds,
            batch_size=batch_size, 
            num_workers=os.cpu_count(),
            pin_memory=True
          )
 
 # define the timm model
 def get_model():
     model = VisionTransformer(
         class_token=False,
         global_pool="avg",
         img_size=256,
         embed_dim=1280,
         num_classes=1024,
         depth=32,
         num_heads=16
     )
     if fp8_type:
         swap_linear_with_float8_linear(model, Float8Linear)
     return model
 
 # define the training step
 def train_step(inputs, label, model, optimizer, criterion):
     with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
         outputs = model(inputs)
         loss = criterion(outputs, label)
     optimizer.zero_grad(set_to_none=True)
     loss.backward()
     if fp8_type:
         sync_float8_amax_and_scale_history(model)
     optimizer.step()
 
 
 model = get_model()
 optimizer = torch.optim.Adam(model.parameters())
 criterion = torch.nn.CrossEntropyLoss()
 train_loader = get_data(batch_size)
 
 # copy the model to the GPU
 model = model.to(device)
 if compile_model:
     # compile model
     model = torch.compile(model)
 model.train()
 
 t0 = time.perf_counter()
 summ = 0
 count = 0
 
 for step, data in enumerate(train_loader):
     # copy data to GPU
     inputs = data[0].to(device=device, non_blocking=True)
     label = data[1].squeeze(-1).to(device=device, non_blocking=True)
 
     # train step
     train_step(inputs, label, model, optimizer, criterion)
 
     # capture step time
     batch_time = time.perf_counter() - t0
     if step > 10:  # skip first steps
         summ += batch_time
         count += 1
     t0 = time.perf_counter()
     if step > 50:
         break
 
 print(f'average step time: {summ / count}')

这里需要特定的转换函数,将一些操作转换为支持FP8的版本,需要说明的是,因为还在试验阶段所以可能不稳定

FP8线性层的使用使我们的模型的性能比我们的基线实验提高了47%(!!)

对比TE

未编译的TE FP8模型的性能明显优于我们以前的FP8模型,但编译后的PyTorch FP8模型提供了最好的结果。因为TE FP8模块不支持模型编译。所以使用torch.compile会导致"部分编译",即它在每次使用FP8时将计算分拆为多个图。

总结

在这篇文章中,我们演示了如何编写PyTorch训练脚本来使用8位浮点类型。TE是一个非常好的库,因为它可以让我们的代码修改量最小,而PyTorch原生FP8支持虽然需要修改代码,并且还是在试验阶段(最新的2.3还是在试验阶段),可能会产生问题,但是这会让训练速度更快。

不过总的来说FP8的确可以加快我们的训练速度,提高GPU的使用效率。这里要提一句TE是由NVIDIA开发的,并对其gpu进行了大量定制,所以如果是N卡的话可以直接用TE
https://avoid.overfit.cn/post/0dd1fba546674b48b932260fa8742971

相关推荐
懒大王爱吃狼24 分钟前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍
深度学习实战训练营29 分钟前
基于CNN-RNN的影像报告生成
人工智能·深度学习
秃头佛爷1 小时前
Python学习大纲总结及注意事项
开发语言·python·学习
昨日之日20062 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_2 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover2 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川3 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
API快乐传递者3 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃5 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力7 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络