本篇较难,建议优先学习上篇 ;20个硬核Python脚本-CSDN博客
接上篇文章,对于Pyhon的学习,上篇学习的结束相信大家对于Pyhon有了一定的理解和经验,学习完上篇文章之后再研究研究剩下的30个脚本你将会有所成就!加油!
目录
[21、数据库连接 - SQLite](#21、数据库连接 - SQLite)
[22、图像处理 - Pillow](#22、图像处理 - Pillow)
[23、图形界面 - Tkinter](#23、图形界面 - Tkinter)
[24、文本生成 - Faker](#24、文本生成 - Faker)
[25、加密和解密 - cryptography](#25、加密和解密 - cryptography)
[27、并发编程 - threading](#27、并发编程 - threading)
[28、正则表达式 - re](#28、正则表达式 - re)
[29、REST API - FastAPI](#29、REST API - FastAPI)
[30、数据库连接 - SQLAlchemy](#30、数据库连接 - SQLAlchemy)
[31、文本处理 - NLTK](#31、文本处理 - NLTK)
[32、命令行应用 - argparse](#32、命令行应用 - argparse)
[33、微服务 - Flask-RESTful](#33、微服务 - Flask-RESTful)
[34、数据处理 - BeautifulSoup](#34、数据处理 - BeautifulSoup)
[35、加密 - hashlib](#35、加密 - hashlib)
[36、数据序列化 - Pickle](#36、数据序列化 - Pickle)
[37、并行处理 - concurrent.futures](#37、并行处理 - concurrent.futures)
[38、网络爬虫 - Scrapy](#38、网络爬虫 - Scrapy)
[39、异步编程 - asyncio](#39、异步编程 - asyncio)
[40、数据分析 - Numpy](#40、数据分析 - Numpy)
[41、数据处理 - Pandas](#41、数据处理 - Pandas)
[42、数据可视化 - Matplotlib](#42、数据可视化 - Matplotlib)
[43、机器学习 - Scikit-Learn](#43、机器学习 - Scikit-Learn)
[44、机器学习 - Keras](#44、机器学习 - Keras)
[45、图像处理 - OpenCV](#45、图像处理 - OpenCV)
[46、数据爬取 - Scrapy](#46、数据爬取 - Scrapy)
[47、数据分析 - Seaborn](#47、数据分析 - Seaborn)
[48、数据可视化 - Plotly](#48、数据可视化 - Plotly)
[49、自然语言处理 - spaCy](#49、自然语言处理 - spaCy)
[50、机器学习 - XGBoost](#50、机器学习 - XGBoost)
21、数据库连接 - SQLite
import sqlite3
conn = sqlite3.connect('mydatabase.db')
cursor = conn.cursor()
cursor.execute('CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY, name TEXT)')
conn.commit()
conn.close()
官方文档: https://www.sqlite.org/docs.html
22、图像处理 - Pillow
from PIL import Image
img = Image.open('example.jpg')
img.show()
官方文档: https://pillow.readthedocs.io/en/stable/index.html
23、图形界面 - Tkinter
import tkinter as tk
root = tk.Tk()
label = tk.Label(root, text="Hello, GUI!")
label.pack()
root.mainloop()
官方文档: https://docs.python.org/3/library/tkinter.html
24、文本生成 - Faker
from faker import Faker
fake = Faker()
print(fake.name())
官方文档: https://faker.readthedocs.io/en/master/
25、加密和解密 - cryptography
from cryptography.fernet import Fernet
key = Fernet.generate_key()
cipher_suite = Fernet(key)
text = "Secret message".encode()
cipher_text = cipher_suite.encrypt(text)
print(cipher_text)
官方文档: https://cryptography.io/en/latest/
26、Socket编程
import socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_socket.bind(('127.0.0.1', 12345))
server_socket.listen(5)
print("Server is listening...")
while True:
client_socket, addr = server_socket.accept()
print(f"Connection from {addr}")
client_socket.send(b"Hello, client!")
client_socket.close()
官方文档: https://docs.python.org/3/library/socket.html
27、并发编程 - threading
import threading
def print
_numbers():
for i in range(1, 6):
print(f"Number: {i}")
def print_letters():
for letter in "abcde":
print(f"Letter: {letter}")
thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_letters)
thread1.start()
thread2.start()
官方文档: https://docs.python.org/3/library/threading.html
28、正则表达式 - re
import re
text = "My phone number is 123-456-7890."
pattern = r'\d{3}-\d{3}-\d{4}'
match = re.search(pattern, text)
if match:
print(f"Phone number found: {match.group()}")
官方文档: https://docs.python.org/3/howto/regex.html
29、REST API - FastAPI
from fastapi import FastAPI
app = FastAPI()
@app.get("/items/{item_id}")
def read_item(item_id: int, query_param: str = None):
return {"item_id": item_id, "query_param": query_param}
官方文档: https://fastapi.tiangolo.com/
30、数据库连接 - SQLAlchemy
from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.orm import sessionmaker
from sqlalchemy.ext.declarative import declarative_base
engine = create_engine('sqlite:///mydatabase.db')
Base = declarative_base()
class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String)
Session = sessionmaker(bind=engine)
session = Session()
官方文档: https://docs.sqlalchemy.org/en/20/
31、文本处理 - NLTK
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize
text = "This is a sample sentence."
tokens = word_tokenize(text)
print(tokens)
官方文档: https://www.nltk.org/
32、命令行应用 - argparse
import argparse
parser = argparse.ArgumentParser(description='A simple command-line app')
parser.add_argument('--name', type=str, help='Your name')
args = parser.parse_args()
print(f'Hello, {args.name}!')
官方文档: https://docs.python.org/3/library/argparse.html
33、微服务 - Flask-RESTful
from flask import Flask
from flask_restful import Resource, Api
app = Flask(__name)
api = Api(app)
class HelloWorld(Resource):
def get(self):
return {'message': 'Hello, World!'}
api.add_resource(HelloWorld, '/')
官方文档: https://flask-restful.readthedocs.io/en/latest/
34、数据处理 - BeautifulSoup
from bs4 import BeautifulSoup
import requests
url = "https://www.example.com"
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
print(soup.title.text)
官方文档: https://www.crummy.com/software/BeautifulSoup/bs4/doc/
35、加密 - hashlib
import hashlib
text = "Secret Password"
hash_object = hashlib.sha256(text.encode())
hash_hex = hash_object.hexdigest()
print(hash_hex)
官方文档: https://docs.python.org/3/library/hashlib.html
36、数据序列化 - Pickle
import pickle
data = {'name': 'Alice', 'age': 30}
with open('data.pkl', 'wb') as file:
pickle.dump(data, file)
with open('data.pkl', 'rb') as file:
loaded_data = pickle.load(file)
print(loaded_data)
官方文档: https://docs.python.org/3/library/pickle.html
37、并行处理 - concurrent.futures
import concurrent.futures
def square(x):
return x * x
with concurrent.futures.ThreadPoolExecutor() as executor:
results = executor.map(square, [1, 2, 3, 4, 5])
for result in results:
print(result)
官方文档: https://docs.python.org/3/library/concurrent.futures.html
38、网络爬虫 - Scrapy
import scrapy
class MySpider(scrapy.Spider):
name = 'example.com'
start_urls = ['https://www.example.com']
def parse(self, response):
# 爬取和处理数据
pass
官方文档: https://docs.scrapy.org/en/latest/
39、异步编程 - asyncio
import asyncio
async def hello():
await asyncio.sleep(1)
print("Hello, Async!")
loop = asyncio.get_event_loop()
loop.run_until_complete(hello())
官方文档: https://docs.python.org/3/library/asyncio.html
40、数据分析 - Numpy
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print(arr.mean())
官方文档: https://numpy.org/doc/stable/
41、数据处理 - Pandas
import pandas as pd
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, 30, 35]}
df = pd.DataFrame(data)
print(df)
官方文档: https://pandas.pydata.org/docs/
42、数据可视化 - Matplotlib
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [10, 15, 13, 18, 20]
plt.plot(x, y)
plt.show()
官方文档: https://matplotlib.org/stable/contents.html
43、机器学习 - Scikit-Learn
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2)
clf = RandomForestClassifier(n_estimators=100)
clf.fit(X_train, y_train)
官方文档: https://scikit-learn.org/stable/documentation.html
44、机器学习 - Keras
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
官方文档: https://keras.io/guides/
45、图像处理 - OpenCV
import cv2
image = cv2.imread('image.jpg')
cv2.imshow('Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
官方文档: https://docs.opencv.org/master/index.html
46、数据爬取 - Scrapy
import scrapy
class MySpider(scrapy.Spider):
name = 'example.com'
start_urls = ['https://www.example.com']
def parse(self, response):
# 爬取和处理数据
pass
47、数据分析 - Seaborn
import seaborn as sns
import matplotlib.pyplot as plt
data = sns.load_dataset("iris")
sns.pairplot(data, hue="species")
plt.show()
官方文档: https://seaborn.pydata.org/introduction.html
48、数据可视化 - Plotly
import plotly.express as px
fig = px.scatter(x=[1, 2, 3, 4], y=[10, 11, 12, 13])
fig.show()
官方文档: https://plotly.com/python/
49、自然语言处理 - spaCy
import spacy
nlp = spacy.load('en_core_web_sm')
doc = nlp("This is a sample sentence.")
for token in doc:
print(token.text, token.pos_)
官方文档: https://spacy.io/usage/spacy-101
50、机器学习 - XGBoost
import xgboost as xgb
data = xgb.DMatrix('train.csv')
param = {'max_depth': 3, 'eta': 0.1, 'objective': 'reg:squarederror'}
model = xgb.train(param, data, 10)
官方文档: https://xgboost.readthedocs.io/en/latest/
结束 over