异构图上的连接预测一

这里写目录标题

异构图?

异构图:就是指节点与边类型不同的图。

连接预测:目的是预测图中两个节点之间是否存在一条边,或者是预测两个节点之间,在未来可能形成的连接。

eg:

节点:

研究人员A、研究人员B、研究人员C

论文P1、论文P2

机构I1

边关系:

研究人员A 写作 论文P1

研究人员B 写作 论文P1

研究人员C 写作 论文P2

论文P1 隶属于 机构I1

例如呢,我们想预测 在未来 A 与B 是否会合作写作论文呢?

或者是预测 B会不会加入机构l1呢?

处理数据:

代码展示,其中包括我其中遇到的困惑。

python 复制代码
"""
MoviesLens数据集:描述了MoviesLens的评分以及标记活动。
该数据集包括600多个用户对9000多部电影的10万个评分。
使用该数据集生成两种节点类型: 分别保存电影  和 用户的数据,
以及一种连接用户和电影的边缘类型,表示用户是否对特定电影进行了评级关系。
最后,链接预测任务 尝试预测缺失的评分,可以用于向用户推荐新电影。

"""

import torch
import os
import pandas as pd
from torch_geometric.data import HeteroData
import torch_geometric.transforms as T
# 电影
movies_path = './data/ml-latest-small/movies.csv'
# 评分
ratings_path = './data/ml-latest-small/ratings.csv'

# 在处理数据之前肯定得先知道csv中的数据格式
# print('movies.csv')
# print('movies.csv:')
# print('===========')
# print(pd.read_csv(movies_path)[["movieId", "genres"]].head(10))
# print()
# print('ratings.csv:')
# print('============')
# print(pd.read_csv(ratings_path)[["userId", "movieId"]].head(10))

# 加载数据,movieId 作为索引列
movies_df = pd.read_csv(movies_path,index_col='movieId')
# data = {
#     'movieId': [1, 2, 3],
#     'title': ['Toy Story', 'Jumanji', 'Grumpier Old Men'],
#     'genres': ['Adventure|Animation|Children|Comedy|Fantasy',
#                'Adventure|Children|Fantasy',
#                'Comedy|Romance']
# }
# 执行下方这行代码,作用就是按照 | 进行分割,且使用one-hot 编码
# 输出:   Adventure  Animation  Children  Comedy  Fantasy  Romance
# 0          1          1         1       1        1        0
# 1          1          0         1       0        1        0
# 2          0          0         0       1        0        1
genres = movies_df['genres'].str.get_dummies('|')
# print(genres[["Action", "Adventure", "Drama", "Horror"]].head())
# (9742, 20) 9742部电影,20种体裁
# print(genres.values.shape)
# 将genres作为电影的输入特征
movie_feat = torch.from_numpy(genres.values).to(torch.float)
assert movie_feat.size() == (9742,20)

# 同理对评分进行处理
ratings_df = pd.read_csv(ratings_path)

# 提取出每个用户的id
"""
ratings_data = {
    'userId': [10, 20, 10, 30, 20, 40, 30, 50],
    'movieId': [101, 101, 102, 103, 104, 105, 106, 107],
    'rating': [3.5, 4.0, 2.5, 5.0, 4.0, 3.0, 4.5, 2.0]
}
"""
# unique_user_id = ([10, 20, 30, 40, 50])
unique_user_id = ratings_df['userId'].unique()
# 创建映射表
"""
 userId  mappedID
0      10         0
1      20         1
2      30         2
3      40         3
4      50         4
"""
unique_user_id = pd.DataFrame(data={
    'userId': unique_user_id,
    'mappedID':pd.RangeIndex(len(unique_user_id))
})

# 同理,对电影进行相同处理
unique_movie_id = ratings_df['movieId'].unique()
unique_movie_id = pd.DataFrame(data={
    'movieId':unique_movie_id,
    'mappedID':pd.RangeIndex(len(unique_movie_id))
})

# 获取user和movie的原始Id和映射ID
# 下方这代码,不就是将评分表种的原始id与获取的映射id进行映射而已吗
ratings_user_id = pd.merge(ratings_df['userId'],unique_user_id,
                           left_on='userId',right_on='userId',how='left')
ratings_user_id = torch.from_numpy(ratings_user_id['mappedID'].values)

ratings_movie_id = pd.merge(ratings_df['movieId'], unique_movie_id,
                            left_on='movieId', right_on='movieId', how='left')
ratings_movie_id = torch.from_numpy(ratings_movie_id['mappedID'].values)

# 构造'edge_index'
# 在这里,你肯定会有这个疑惑?
# 为啥能那么刚好,例如用户id为0的,刚好就是评论10号电影呢?
# 其实在一开始,所有的数据都是安排好的
#  'userId': [1, 2, 1, 3, 2, 4, 3, 5],
#    'movieId': [101, 101, 102, 103, 104, 105, 106, 107],
#    'rating': [3.5, 4.0, 2.5, 5.0, 4.0, 3.0, 4.5, 2.0]
# 是不是一一对应呢?只是将userid和movieid转变为对应的mappedid而已
# 例如:userid:[0, 1, 0, 2, 1, 3, 2, 4]
#      movieid:[0, 0, 1, 2, 3, 4, 5, 6]
edge_index_user_to_movie = torch.stack([ratings_user_id,ratings_movie_id],dim=0)
assert edge_index_user_to_movie.size() == (2,100836)
"""
tensor([[   0,    0,    0,  ...,  609,  609,  609],
        [   0,    1,    2,  ..., 3121, 1392, 2873]])
"""
# print(edge_index_user_to_movie)

# 到现在,完成了数据的处理
# 初始化HeterData 对象。
data = HeteroData()

# 保存节点索引
data['user'].node_id = torch.arange(len(unique_user_id))
data['movie'].node_id = torch.arange(len(movies_df))

# 添加节点特征和边索引
data['movie'].x = movie_feat  # 电影的体裁作为节点特征,因为每个电影可能会有多个体裁
data['user','rates','movie'].edge_index =edge_index_user_to_movie

# 添加反向边,使得GNN能够在两个方向上传递消息,那不就是成为无向图咯
data = T.ToUndirected()(data)

print(data)
assert data.node_types == ["user", "movie"]
assert data.edge_types == [("user", "rates", "movie"),
                           ("movie", "rev_rates", "user")]

assert data["user"].num_nodes == 610
assert data["user"].num_features == 0
assert data["movie"].num_nodes == 9742
assert data["movie"].num_features == 20

assert data["user", "rates", "movie"].num_edges == 100836
assert data["movie", "rev_rates", "user"].num_edges == 100836
相关推荐
yyytucj几秒前
python--列表list切分(超详细)
linux·开发语言·python
大数据魔法师14 分钟前
1905电影网中国地区电影数据分析(一) - 数据采集、清洗与存储
爬虫·python
索然无味io23 分钟前
XML外部实体注入--漏洞利用
xml·前端·笔记·学习·web安全·网络安全·php
AI量化投资实验室27 分钟前
deap系统重构,再新增一个新的因子,年化39.1%,卡玛提升至2.76(附python代码)
大数据·人工智能·重构
一弓虽33 分钟前
java基础学习——jdbc基础知识详细介绍
java·学习·jdbc·连接池
张登杰踩35 分钟前
如何快速下载Huggingface上的超大模型,不用梯子,以Deepseek-R1为例子
人工智能
AIGC大时代35 分钟前
分享14分数据分析相关ChatGPT提示词
人工智能·chatgpt·数据分析
TMT星球1 小时前
生数科技携手央视新闻《文博日历》,推动AI视频技术的创新应用
大数据·人工智能·科技
五味香1 小时前
Java学习,List 元素替换
android·java·开发语言·python·学习·golang·kotlin
AI视觉网奇1 小时前
图生3d算法学习笔记
人工智能