数字图像处理系列 | 非线性滤波 (4)

非线性滤波就不能做卷积了

文章目录

前言. 去除噪声

如果使用线性滤波

1. 中值滤波

    1. 排列 k 2 k^2 k2所有的值
    1. 把 k 2 k^2 k2中,中间大小的那个值赋给当前的像素
    1. 你看效果,很好的吧噪声去掉了吧,但你仔细看还是可以从背景看到噪声
    1. k k k 越大的时候,除掉的噪声越多,但硬币也越模糊了

2. 重新思考一下 -- 高斯平滑滤波

高斯平滑哪里不好用呢?

  • 在空白背景的时候,高斯处理的蛮好的对吧
  • 在有物体,数字的时候,高斯就把物体平滑掉了。

but,我们是不是可以结合高斯平滑滤波的优点和非线性滤波的优点,来做这个去噪呢?

  • 之前,我们整个图片都在使用一个filter
  • 其实,我们可以根据每一个局部地区,使用某种kernal
  • Design a filter that can modify the kernel, its kernel gets modified depending on the structure of the image locally, what the neighthood of the pixel looks like, you're essentially willing to create a new filter for each pixcel.
  • If any pixel is very different in density
  • by simply biasing the Gaussian kernel, such that pixels not similar in intensity to the center pixels receive lower weight, 这里我们把这个weight给到了0
  • 你看output图片很干净吧

3. Bilateral Filter

3.1 从高斯开始解释

  • 这是一个常规的高斯平滑
  • 看下图Input(f), [i,j] 红色的位置,黄色的位置,和绿色的位置,对应于高斯滤波的位置,绿色和黄色的权重是一样的,这在Input中是不合适的,因为Input中红和绿离的比较远。
  • 如何解决上述说的问题呢。看下一小节。

3.2 Add Bias to Gaussian

  • 增加一个亮度高斯卷积核,
  • 如果某点亮度小,就给与一个大的权重
  • 如果某点亮度大,就给与一个小的权重

Example

  • 原始图片,脸上有一些噪音,我们想去除这些噪音,但不损失图片细节。
  • 图二,使用了高斯滤波,细节会消失
  • 图三,使用Bilateral滤波,消除了噪音,保留了细节

相关推荐
喜欢吃豆几秒前
从指令到智能:大型语言模型提示词工程与上下文工程的综合分析
人工智能·语言模型·自然语言处理·大模型·提示词工程·上下文工程
七元权3 分钟前
论文阅读-FoundationStereo
论文阅读·深度学习·计算机视觉·零样本·基础模型·双目深度估计
Fuly10244 分钟前
prompt构建技巧
人工智能·prompt
XXX-X-XXJ9 分钟前
二:RAG 的 “语义密码”:向量、嵌入模型与 Milvus 向量数据库实操
人工智能·git·后端·python·django·milvus
艾醒(AiXing-w)16 分钟前
探索大语言模型(LLM):大模型微调方式全解析
人工智能·语言模型·自然语言处理
科兴第一吴彦祖19 分钟前
基于Spring Boot + Vue 3的乡村振兴综合服务平台
java·vue.js·人工智能·spring boot·推荐算法
姚瑞南26 分钟前
【AI 风向标】四种深度学习算法(CNN、RNN、GAN、RL)的通俗解释
人工智能·深度学习·算法
渡我白衣1 小时前
深度学习入门(一)——从神经元到损失函数,一步步理解前向传播(上)
人工智能·深度学习·学习
补三补四1 小时前
SMOTE 算法详解:解决不平衡数据问题的有效工具
人工智能·算法
为java加瓦1 小时前
前端学AI:如何写好提示词(prompt)
前端·人工智能·prompt