代码很简单。
import numpy as np
import matplotlib.pyplot as plt
#------------------------Bandstop Filter Function------------------------
def bandstop(M,low,high,Fs):
#50Hz removal
k1 = int( (low/Fs)*M) # index 22
k2 = int( (high/Fs)*M) # index 27
#DC removal
k0 = int( (1/Fs)*M) # index 0
#Creating the desired frequency response X for the bandstop filter
X = np.ones(M) # Frequency response
#DC removal
X[0:k0+1]=0 # from index 0 to 0
#50Hz removal
X[k1:k2+1]=0 # from index 22 to 27
#Mirror of the 50Hz removal
X[M-k2:M-k1+1] = 0 # from index 492 to 477
#Passing the created frequency response to ifft to get impulse response signal
x = np.real(np.fft.ifft(X)) # signal x - impulse response of system
return x
#-----------------------------FIR Filter Function---------------------------
def FIR_filter(ecg,h):
M = len(ecg) # length of ecg
N = len(h) #length of coefficients h
filtered = np.zeros( M + N - 1 ) # list of zeros of length M+N-1
for n in range( M+N ): #iterates from 0 to M+N
for k in range(N): #iterates from 0 to N
if 0 <= n-k <= M-1 : #allows only possible index numbers for ecg
filtered[n] = filtered[n] + ecg[n-k]*h[k] # convolution formula
filtered = filtered[int(N/2):] #removing first 250 values
filtered = filtered[: int(len(filtered) - N/2)] #removing last 250 values
return filtered
#----------Importing and preparing the signal before filtering-----------
data= np.loadtxt('ecg_data.dat')
xval = data[:,0]
ecg = data[:,1]
ampGain = 500; # Amplitude Gain
Fs = 1000; # Sampling Frequency
# Reducing the signal to remove amplitude gain
ecg = ecg/ampGain #ecg amplitude in mVs
midval = min(ecg) + (max(ecg)-min(ecg))/2
ecg = ecg-midval #normalising
#---------------------------------Filtering-----------------------------
# Designing a FIR filter using Window method
# Bandstop filter
M = 500 #length/order of filter
x = bandstop(M,45,55,Fs)
# Positioning first half in second half and second half in first half
# making the 45-55hz removal around midpoint
# which accordingly denoise the signal
h = np.zeros(M)
h[0:int(M/2)] = x[int(M/2):M] # 250 to 499
h[int(M/2):M] = x[0:int(M/2)] # 0 to 249
# Hamming window (Taper formed by weighted cosine)
# Maximum value normalised to one
h = np.hamming(M)*h
#Filtering the whole signal
Filtered_signal = FIR_filter(ecg,h)
#-------------------------------Plotting---------------------------------
plt.figure(1)
plt.plot(xval,ecg)
plt.title('Unfiltered ECG [time domain]')
plt.xlabel('Time [mS]')
plt.ylabel('Amplitude')
plt.grid()
plt.figure(2)
plt.plot(Filtered_signal)
plt.title("Filtered ECG [time domain]")
plt.xlabel("Time [ms]")
plt.ylabel("Amplitude")
plt.grid()
plt.figure(3)
plt.plot(xval[5000:6000],ecg[5000:6000])
plt.xlabel("Time [ms]")
plt.ylabel("Amplitude")
plt.title("Unfiltered ECG [Momentary]")
plt.grid()
plt.figure(4)
plt.plot(xval[5000:6000],Filtered_signal[5000:6000])
plt.xlabel("Time [ms]")
plt.ylabel("Amplitude")
plt.title("Filtered ECG [Momentary]")
plt.grid()
#Frequency response for the ECG
fftdata = np.fft.fft(ecg)
faxis = np.linspace(0,Fs, len(fftdata))
plt.figure(5)
plt.plot(faxis, np.abs(fftdata))
plt.title("Unfiltered ECG [frequency domain]")
plt.xlabel("Frequency [Hz]")
plt.ylabel("Amplitude")
plt.grid()
#Frequency response for the filtered ECG
fftdata1 = np.fft.fft(Filtered_signal)
faxis1 = np.linspace(0,Fs, len(fftdata1))
plt.figure(6)
plt.plot(faxis1, np.abs(fftdata1))
plt.title('Filtered ECG [frequency domain]')
plt.xlabel("Frequency [Hz]")
plt.ylabel("Amplitude")
plt.grid()
工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。