机器学习之支持向量机SVM

支持向量机

  • 概念

    是supported vector machine(支持向量机),即寻找一个超平面使样本分成两类,且间隔最大分类

  • 分类

    • 硬间隔

      • 若样本线性可分,且所有样本分类正确情况下,寻找最大间隔,即硬间隔

      • 若出现异常值或样本不能线性可分,则无法实现

    • 软间隔

      • 允许部分样本,在最大间隔之间,甚至在错误的一边,寻找最大间隔,即软间隔

      • 目标是尽可能保持间隔宽阔和限制间隔违例之间找到良好平衡

  • 核函数Kernel

    将原始输入空间映射到新的特征空间,使得原本线性不可分样本在核空间可分

SVMAPI
  • class sklearn.svm.LinearSVC(C=1)

  • C:惩罚参数,类似于线性回归中正则化系数

  • LinearSVC API使用方法

    • 导包:from sklearn.svm import LinearSVC

    • 实例化: mysvc = LinearSVC(C=30)

    • 训练模型:mysvc.fit(X_standard,y)

    • 输出准确率:print(myscv.score(X_standard,y))

  • 惩罚参数C对超平面影响

    C值越大,间隔越小,落在间隔中的违例越少,反之,C值越小,间隔越大,违例越多

SVM算法原理
  • 思想:要去求一组参数(w,b),使其构建的超平面函数能够最优分离两个集合
  • 样本空间中任意点x到超平面(w,b)距离可为:

  • 若想找到具有最大间隔划分超平面,也就是要找到能满右足式中约束参数w和b,使得间隔γ最大

  • 距离超平面最近的几个训练样本点使上式等号成立,他们被称为"支持向量"两个异类支持向量到超平面距离之和为:

SVM核函数
  • 作用

    将原始输入空间映射到新的特征空间,从而使原本线性不可分样本在核孔间可分

  • 分类​

    高斯核(RBF、径向基函数):产生将样本投射到无限维空间运算效果,使得原来不可分数据变得可分。使用最多

  • 高斯核函数γ作用

  • 高斯函数API

    • 导包: from sklearn.svm import SVC

    • 实例化:SVC(kernel='rbf' gamma=gamma)

    • gamama:值越大,高斯分布越窄(数据变化越剧烈,易过拟合),反之,值越小,高斯分布越宽(数据变化越平缓),易欠拟合,rbf是高斯核

    • gamama参数意义

相关推荐
草履虫建模16 小时前
力扣算法 1768. 交替合并字符串
java·开发语言·算法·leetcode·职场和发展·idea·基础
naruto_lnq18 小时前
分布式系统安全通信
开发语言·c++·算法
Jasmine_llq18 小时前
《P3157 [CQOI2011] 动态逆序对》
算法·cdq 分治·动态问题静态化+双向偏序统计·树状数组(高效统计元素大小关系·排序算法(预处理偏序和时间戳)·前缀和(合并单个贡献为总逆序对·动态问题静态化
爱吃rabbit的mq19 小时前
第09章:随机森林:集成学习的威力
算法·随机森林·集成学习
(❁´◡`❁)Jimmy(❁´◡`❁)19 小时前
Exgcd 学习笔记
笔记·学习·算法
YYuCChi20 小时前
代码随想录算法训练营第三十七天 | 52.携带研究材料(卡码网)、518.零钱兑换||、377.组合总和IV、57.爬楼梯(卡码网)
算法·动态规划
不能隔夜的咖喱20 小时前
牛客网刷题(2)
java·开发语言·算法
VT.馒头20 小时前
【力扣】2721. 并行执行异步函数
前端·javascript·算法·leetcode·typescript
进击的小头20 小时前
实战案例:51单片机低功耗场景下的简易滤波实现
c语言·单片机·算法·51单片机
zhangfeng113321 小时前
氨基酸序列表示法,蛋白质序列表达 计算机中机器学习 大语言模型中的表达,为什么没有糖蛋白或者其他基团磷酸化甲基化乙酰化泛素化
人工智能·机器学习·语言模型