机器学习之支持向量机SVM

支持向量机

  • 概念

    是supported vector machine(支持向量机),即寻找一个超平面使样本分成两类,且间隔最大分类

  • 分类

    • 硬间隔

      • 若样本线性可分,且所有样本分类正确情况下,寻找最大间隔,即硬间隔

      • 若出现异常值或样本不能线性可分,则无法实现

    • 软间隔

      • 允许部分样本,在最大间隔之间,甚至在错误的一边,寻找最大间隔,即软间隔

      • 目标是尽可能保持间隔宽阔和限制间隔违例之间找到良好平衡

  • 核函数Kernel

    将原始输入空间映射到新的特征空间,使得原本线性不可分样本在核空间可分

SVMAPI
  • class sklearn.svm.LinearSVC(C=1)

  • C:惩罚参数,类似于线性回归中正则化系数

  • LinearSVC API使用方法

    • 导包:from sklearn.svm import LinearSVC

    • 实例化: mysvc = LinearSVC(C=30)

    • 训练模型:mysvc.fit(X_standard,y)

    • 输出准确率:print(myscv.score(X_standard,y))

  • 惩罚参数C对超平面影响

    C值越大,间隔越小,落在间隔中的违例越少,反之,C值越小,间隔越大,违例越多

SVM算法原理
  • 思想:要去求一组参数(w,b),使其构建的超平面函数能够最优分离两个集合
  • 样本空间中任意点x到超平面(w,b)距离可为:

  • 若想找到具有最大间隔划分超平面,也就是要找到能满右足式中约束参数w和b,使得间隔γ最大

  • 距离超平面最近的几个训练样本点使上式等号成立,他们被称为"支持向量"两个异类支持向量到超平面距离之和为:

SVM核函数
  • 作用

    将原始输入空间映射到新的特征空间,从而使原本线性不可分样本在核孔间可分

  • 分类​

    高斯核(RBF、径向基函数):产生将样本投射到无限维空间运算效果,使得原来不可分数据变得可分。使用最多

  • 高斯核函数γ作用

  • 高斯函数API

    • 导包: from sklearn.svm import SVC

    • 实例化:SVC(kernel='rbf' gamma=gamma)

    • gamama:值越大,高斯分布越窄(数据变化越剧烈,易过拟合),反之,值越小,高斯分布越宽(数据变化越平缓),易欠拟合,rbf是高斯核

    • gamama参数意义

相关推荐
地平线开发者1 小时前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
地平线开发者2 小时前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
星星火柴9363 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
艾莉丝努力练剑3 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法
Moshow郑锴4 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
C++、Java和Python的菜鸟5 小时前
第六章 统计初步
算法·机器学习·概率论
Cx330❀5 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
散1125 小时前
01数据结构-Prim算法
数据结构·算法·图论
起个昵称吧5 小时前
线程相关编程、线程间通信、互斥锁
linux·算法
myzzb6 小时前
基于uiautomation的自动化流程RPA开源开发演示
运维·python·学习·算法·自动化·rpa