操作pytorch进行深度学习的步骤和解释——以简单线性回归为例

python 复制代码
import torch

x_data = torch.Tensor([[1],[2],[3]])

y_data = torch.Tensor([[2],[4],[6]])

class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel,self).__init__()
        self.linear = torch.nn.Linear(1,1)
    def forward(self,x):
        y_pred = self.linear(x)
        return y_pred
model = LinearModel()
criterion = torch.nn.MSELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)
losses = []
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    print(epoch,loss)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    losses.append(loss.item())


print('w=',model.linear.weight.item())
print('b=',model.linear.bias.item())

x_test = torch.Tensor([[4]])
y_test = model(x_test)
print('y_pred=',y_test.data)

导入PyTorch库,这是使用PyTorch进行深度学习所必需的。

python 复制代码
x_data = torch.Tensor([[1],[2],[3]])

创建一个包含三个样本的二维张量**x_data**,每个样本是一个一维张量,代表模型的输入特征。

python 复制代码
y_data = torch.Tensor([[2],[4],[6]])

创建一个包含三个样本的二维张量**y_data**,每个样本是一个一维张量,代表模型的输出目标值。

python 复制代码
class LinearModel(torch.nn.Module):

定义一个名为**LinearModel** 的类,它继承自torch.nn.Module,是构建任何神经网络模型的基础。

python 复制代码
def __init__(self):
    super(LinearModel,self).__init__() 
    self.linear = torch.nn.Linear(1,1)

在**LinearModel** 类的构造函数中,首先调用父类的构造函数。然后创建一个线性层**self.linear,** 它是一个一元线性模型,输入和输出特征的数量都是1输入的特征维度是1,输出特征维度也是1,这样就可让模型知道W和b的维度是多少。

python 复制代码
def forward(self,x): 
    y_pred = self.linear(x) 
    return y_pred

定义模型的前向传播函数。它接受输入x,通过线性层self.linear进行计算,得到预测输出y_pred,然后返回这个预测值。这个函数是必须存在的

python 复制代码
model = LinearModel()

实例化**LinearModel类**,创建模型对象。

python 复制代码
criterion = torch.nn.MSELoss(size_average=False)

创建一个均方误差损失函数**criterionsize_average=False**参数(即将被弃用)指定损失函数在计算时应累加所有样本的损失。size_average=False代表着损失,不用求均值。

python 复制代码
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)

创建一个随机梯度下降**(SGD** )优化器**optimizer**,用于更新模型的参数。学习率设置为0.01。

python 复制代码
losses = []

初始化一个空列表**losses**,用于存储训练过程中的每一轮损失值。

python 复制代码
for epoch in range(1000):

开始一个训练循环,总共训练1000个epoch(轮次)。

python 复制代码
y_pred = model(x_data)

在每个epoch中,计算模型对输入数据x_data的预测输出y_pred

python 复制代码
loss = criterion(y_pred,y_data)

计算预测输出y_pred和目标值y_data之间的损失。

python 复制代码
print(epoch,loss)

打印当前epoch和对应的损失值。

python 复制代码
optimizer.zero_grad()

在每次参数更新前,清空过往梯度。

python 复制代码
loss.backward()

对损失函数进行反向传播,计算模型参数的梯度。

python 复制代码
optimizer.step()

根据计算得到的梯度,使用优化器更新模型的参数。

python 复制代码
losses.append(loss.item())

将当前epoch的损失值添加到losses列表中。

python 复制代码
print('w=',model.linear.weight.item())

打印模型中线性层的权重w

python 复制代码
print('b=',model.linear.bias.item())

打印模型中线性层的偏置b

python 复制代码
x_test = torch.Tensor([[4]])

创建一个新的输入张量x_test,用于测试模型。

python 复制代码
y_test = model(x_test)

使用训练好的模型对x_test进行预测,得到y_test

python 复制代码
print('y_pred=',y_test.data)

打印测试数据的预测输出y_pred

这个代码实现了一个简单的线性回归模型,并通过梯度下降方法训练模型参数。最后,它还打印了训练后的权重、偏置以及对新数据的预测结果。

相关推荐
羊小猪~~2 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
软工菜鸡28 分钟前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
deephub2 小时前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
___Dream2 小时前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
极客代码2 小时前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
王哈哈^_^3 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt
写代码的小阿帆3 小时前
pytorch实现深度神经网络DNN与卷积神经网络CNN
pytorch·cnn·dnn
是瑶瑶子啦3 小时前
【深度学习】论文笔记:空间变换网络(Spatial Transformer Networks)
论文阅读·人工智能·深度学习·视觉检测·空间变换
wangyue45 小时前
c# 深度模型入门
深度学习
川石课堂软件测试5 小时前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana