transfomer中attention为什么要除以根号d_k

简介

得到矩阵 Q, K, V之后就可以计算出 Self-Attention 的输出了,计算的公式如下:
A t t e n t i o n ( Q , K , V ) = S o f t m a x ( Q K T d k ) V Attention(Q,K,V)=Softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=Softmax(dk QKT)V

好处

除以维度的开方,可以将数据向0方向集中,使得经过softmax后的梯度更大.

从数学上分析,可以使得QK的分布和Q/K保持一致,

推导

对于两个独立的正态分布而言,两者的加法的期望和方差就是两个独立分布的期望和方差。

qk_T的计算过程为[len_q,dim][dim,len_k]=[len_q,len_k],qk的元素等于dim个乘积的和。对于0-1分布表乘积不会影响期望和方差,但是求和操作会使得方差乘以dim,因此对qk元素除以sqrt(dim)把标准差压回1.

这里展示一个不严谨的采样可视化过程

假设在query在(0,1)分布,key在(0,1)分布,随机采样lengthdim个点,然后统计querykey_T的散点的分布

cpp 复制代码
import math
import numpy as np
import matplotlib.pyplot as plt


def plot_curve(mu=0, sigma =1):
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.stats import norm
    # 设置正态分布的参数
    # mu, sigma = 0, 1  # 均值和标准差
    # 创建一个x值的范围,覆盖正态分布的整个区间
    x = np.linspace(mu - 4 * sigma, mu + 4 * sigma, 1000)
    # 计算对应的正态分布的概率密度值
    y = norm.pdf(x, mu, sigma)
    # 我们可以选择y值较高的点来绘制散点图,以模拟概率密度的分布
    # 这里我们可以设置一个阈值,只绘制y值大于某个值的点
    threshold = 0.01  # 可以根据需要调整这个阈值
    selected_points = y > threshold
    plt.plot(x, y, 'r-', lw=2, label='Normal dist. (mu={}, sigma={})'.format(mu, sigma))
    plt.title('Normal Distribution Scatter Approximation')
    plt.xlabel('Value')
    plt.ylabel('Probability Density')
    plt.legend()
    plt.grid(True)
    plt.show()

def plot_poins(x):
    # 因为这是一个一维的正态分布,我们通常只绘制x轴上的点
    # 但为了模拟二维散点图,我们可以简单地将y轴设置为与x轴相同或固定值(例如0)
    y = np.zeros_like(x)
    # 绘制散点图
    plt.figure(figsize=(8, 6))
    plt.scatter(x, y, alpha=0.5)  # alpha控制点的透明度
    plt.title('Normal (0, 1) Distribution Scatter Plot')
    plt.xlabel('Value')
    plt.ylabel('Value (or Frequency if binned)')
    plt.grid(True)
    plt.show()



if __name__ == '__main__':
    # 设置随机种子以便结果可复现
    np.random.seed(0)
    len = 10000
    dim = 100
    query = np.random.normal(0, 1, len*dim).reshape(len,dim)
    key = np.random.normal(0, 1, len*dim).reshape(dim,len)
    qk = np.matmul(query,key) / math.sqrt(dim)

    mean_query = query.mean()
    std_query = np.std(query,ddof=1)

    mean_key = key.mean()
    std_key = np.std(key,ddof=1)

    mean_qk = qk.mean()
    std_qk = np.std(qk,ddof=1)

    plot_poins(query)
    plot_curve(mean_query,std_query)
相关推荐
edisao21 小时前
一。星舰到底改变了什么?
大数据·开发语言·人工智能·科技·php
昨夜见军贴061621 小时前
AI审核的自我进化之路:IACheck AI审核如何通过自主学习持续提升检测报告审核能力
大数据·人工智能
junziruruo21 小时前
t-SNE可视化降维技术(以FMTrack频率感知与多专家融合文章中的内容为例)
人工智能·算法
藦卡机器人1 天前
自动焊接机器人的核心技术要求与标准
人工智能·算法·机器人
小冷coding1 天前
AI Agent 技术栈并探索其在业务创新中的应用
人工智能
喝凉白开都长肉的大胖子1 天前
将gym更新到Gymnasium后需要修改哪些位置
人工智能·机器学习·强化学习’
橙露1 天前
时间序列分析实战:用 Python 实现股票价格预测与风险评估
人工智能·python·机器学习
啊阿狸不会拉杆1 天前
第 3 章 灰度变换与空间域滤波
图像处理·人工智能·机器学习·计算机视觉·数据挖掘·数字图像处理
CCPC不拿奖不改名1 天前
循环神经网络RNN:整数索引→稠密向量(嵌入层 / Embedding)详解
人工智能·python·rnn·深度学习·神经网络·自然语言处理·embedding
学好statistics和DS1 天前
感知机的对偶形式是怎么来的
深度学习·神经网络·机器学习