HALCON-从入门到入门-最常用的算子-二值化

1.废话

图像处理中的二值化是一种将灰度图像转换为只有两种可能值(通常是0和255,分别代表黑色和白色)的过程。这个过程在数字图像处理中非常常见,因为它可以简化图像数据,突出图像的主要特征,并降低后续处理的复杂性。

二值化的关键步骤之一是选择一个阈值。这个阈值将用于确定图像中的每个像素是应该被赋予0(黑色)还是255(白色)。有许多方法可以用来确定这个阈值,包括全局阈值(对整个图像使用单一阈值)和局部阈值(根据图像的局部特性为每个像素或区域选择阈值)。

一旦确定了阈值,就可以对图像进行二值化操作了。对于每个像素,将其灰度值与阈值进行比较。如果灰度值大于或等于阈值,则将该像素设置为白色(或255);否则,将其设置为黑色(或0)。

二值化后,可能还需要进行一些后续处理来优化结果。例如,可以使用形态学操作(如腐蚀、膨胀、开操作和闭操作)来消除噪声、连接断裂的线条或断开重叠的线条。此外,还可以进行边缘检测、特征提取等操作来进一步分析图像。

2.实现效果

复制代码
threshold (GrayImage, Region, 128, 255)

halcon的二值化我觉得非常有意思。

因为它将二值化理解成了一个提取区域的一个操作。

在我图像上的 灰度值符合我要求的这些像素我全部提取出来,组成一个区域(region)

上图中这个红色的就是区域。

变量窗口中显示了这个区域的面积(以像素计算),中心点坐标啥的。

这是提取的整个图片上的白色部分,接着提取黑色部分来看看

正常运行,没有什么问题。

相关推荐
熙梦数字化1 分钟前
企业资源计划(ERP)系统是什么?有哪些特点?
大数据·人工智能·erp
GISer_Jing3 分钟前
SSE Conf大会分享——大模型驱动的智能 可视分析与故事叙述
前端·人工智能·信息可视化
Wai-Ngai6 分钟前
自动驾驶控制算法——模型预测控制(MPC)
人工智能·机器学习·自动驾驶
北京耐用通信7 分钟前
突破协议壁垒:耐达讯自动化Ethernet/IP转CC-Link网关在工业互联中的核心应用
人工智能·网络协议·安全·自动化·信息与通信
提娜米苏8 分钟前
[论文笔记] 基于 LSTM 的端到端视觉语音识别 (End-to-End Visual Speech Recognition with LSTMs)
论文阅读·深度学习·计算机视觉·lstm·语音识别·视觉语音识别
扫描电镜8 分钟前
扫描电镜选购指南:智能、稳定与自动化的综合考量
人工智能·自动化·扫描电镜·自动扫描电镜
AI人工智能+9 分钟前
炫彩活体检测技术:利用RGB色光序列检测用户面部生物特征反应,能有效识别3D面具、Deepfake等伪造攻击
人工智能·人脸识别·炫彩活体检测
无代码专家10 分钟前
数字化转型下的订单管理全流程优化方案
大数据·运维·人工智能
凌晨一点的秃头猪12 分钟前
HSV 3D Histogram(直方图)全局特征提取
深度学习
QianCenRealSim14 分钟前
FSD入华“加速”中国自动驾驶产业的推动与重构
人工智能·重构·自动驾驶