HALCON-从入门到入门-最常用的算子-二值化

1.废话

图像处理中的二值化是一种将灰度图像转换为只有两种可能值(通常是0和255,分别代表黑色和白色)的过程。这个过程在数字图像处理中非常常见,因为它可以简化图像数据,突出图像的主要特征,并降低后续处理的复杂性。

二值化的关键步骤之一是选择一个阈值。这个阈值将用于确定图像中的每个像素是应该被赋予0(黑色)还是255(白色)。有许多方法可以用来确定这个阈值,包括全局阈值(对整个图像使用单一阈值)和局部阈值(根据图像的局部特性为每个像素或区域选择阈值)。

一旦确定了阈值,就可以对图像进行二值化操作了。对于每个像素,将其灰度值与阈值进行比较。如果灰度值大于或等于阈值,则将该像素设置为白色(或255);否则,将其设置为黑色(或0)。

二值化后,可能还需要进行一些后续处理来优化结果。例如,可以使用形态学操作(如腐蚀、膨胀、开操作和闭操作)来消除噪声、连接断裂的线条或断开重叠的线条。此外,还可以进行边缘检测、特征提取等操作来进一步分析图像。

2.实现效果

复制代码
threshold (GrayImage, Region, 128, 255)

halcon的二值化我觉得非常有意思。

因为它将二值化理解成了一个提取区域的一个操作。

在我图像上的 灰度值符合我要求的这些像素我全部提取出来,组成一个区域(region)

上图中这个红色的就是区域。

变量窗口中显示了这个区域的面积(以像素计算),中心点坐标啥的。

这是提取的整个图片上的白色部分,接着提取黑色部分来看看

正常运行,没有什么问题。

相关推荐
gogoMark3 小时前
口播视频怎么剪!利用AI提高口播视频剪辑效率并增强”网感”
人工智能·音视频
2201_754918413 小时前
OpenCV 特征检测全面解析与实战应用
人工智能·opencv·计算机视觉
love530love4 小时前
Windows避坑部署CosyVoice多语言大语言模型
人工智能·windows·python·语言模型·自然语言处理·pycharm
985小水博一枚呀5 小时前
【AI大模型学习路线】第二阶段之RAG基础与架构——第七章(【项目实战】基于RAG的PDF文档助手)技术方案与架构设计?
人工智能·学习·语言模型·架构·大模型
白熊1885 小时前
【图像生成大模型】Wan2.1:下一代开源大规模视频生成模型
人工智能·计算机视觉·开源·文生图·音视频
weixin_514548895 小时前
一种开源的高斯泼溅实现库——gsplat: An Open-Source Library for Gaussian Splatting
人工智能·计算机视觉·3d
四口鲸鱼爱吃盐5 小时前
BMVC2023 | 多样化高层特征以提升对抗迁移性
人工智能·深度学习·cnn·vit·对抗攻击·迁移攻击
Echo``6 小时前
3:OpenCV—视频播放
图像处理·人工智能·opencv·算法·机器学习·视觉检测·音视频
Douglassssssss6 小时前
【深度学习】使用块的网络(VGG)
网络·人工智能·深度学习
okok__TXF6 小时前
SpringBoot3+AI
java·人工智能·spring