HALCON-从入门到入门-最常用的算子-二值化

1.废话

图像处理中的二值化是一种将灰度图像转换为只有两种可能值(通常是0和255,分别代表黑色和白色)的过程。这个过程在数字图像处理中非常常见,因为它可以简化图像数据,突出图像的主要特征,并降低后续处理的复杂性。

二值化的关键步骤之一是选择一个阈值。这个阈值将用于确定图像中的每个像素是应该被赋予0(黑色)还是255(白色)。有许多方法可以用来确定这个阈值,包括全局阈值(对整个图像使用单一阈值)和局部阈值(根据图像的局部特性为每个像素或区域选择阈值)。

一旦确定了阈值,就可以对图像进行二值化操作了。对于每个像素,将其灰度值与阈值进行比较。如果灰度值大于或等于阈值,则将该像素设置为白色(或255);否则,将其设置为黑色(或0)。

二值化后,可能还需要进行一些后续处理来优化结果。例如,可以使用形态学操作(如腐蚀、膨胀、开操作和闭操作)来消除噪声、连接断裂的线条或断开重叠的线条。此外,还可以进行边缘检测、特征提取等操作来进一步分析图像。

2.实现效果

复制代码
threshold (GrayImage, Region, 128, 255)

halcon的二值化我觉得非常有意思。

因为它将二值化理解成了一个提取区域的一个操作。

在我图像上的 灰度值符合我要求的这些像素我全部提取出来,组成一个区域(region)

上图中这个红色的就是区域。

变量窗口中显示了这个区域的面积(以像素计算),中心点坐标啥的。

这是提取的整个图片上的白色部分,接着提取黑色部分来看看

正常运行,没有什么问题。

相关推荐
byzh_rc1 天前
[机器学习-从入门到入土] 现代机器学习
人工智能·机器学习
AI数据皮皮侠1 天前
中国乡村旅游重点村镇数据
大数据·人工智能·python·深度学习·机器学习
小北方城市网1 天前
第 11 课:Python 全栈项目进阶与职业发展指南|从项目到职场的无缝衔接(课程终章・进阶篇)
大数据·开发语言·人工智能·python·数据库架构·geo
栗少1 天前
英语自学手册:系统化进阶指南基于《英语自学手册》的方法论与行动路径
人工智能·算法
danyang_Q1 天前
d2l安装(miniforge+cuda+pytorch)
人工智能·pytorch·python
点云SLAM1 天前
Exponential 英文单词学习
人工智能·exponential·英文单词学习·雅思备考·指数的 / 与指数相关的·急剧增长 / 迅速增加的
机器之心1 天前
智元提出SOP,让VLA模型在真实世界实现可扩展的在线进化
人工智能·openai
Tencent_TCB1 天前
AI Coding全流程教程——0基础搭建“MEMO”健康打卡全栈Web应用(附提示词)
前端·人工智能·ai·ai编程·codebuddy·claude code·cloudbase
新智元1 天前
推理之父走了!OpenAI 七年元老离职:有些研究这里没法做
人工智能
躺柒1 天前
读共生:4.0时代的人机关系06人机合作关系
大数据·人工智能·人机协作·人机对话·人机合作