HALCON-从入门到入门-最常用的算子-二值化

1.废话

图像处理中的二值化是一种将灰度图像转换为只有两种可能值(通常是0和255,分别代表黑色和白色)的过程。这个过程在数字图像处理中非常常见,因为它可以简化图像数据,突出图像的主要特征,并降低后续处理的复杂性。

二值化的关键步骤之一是选择一个阈值。这个阈值将用于确定图像中的每个像素是应该被赋予0(黑色)还是255(白色)。有许多方法可以用来确定这个阈值,包括全局阈值(对整个图像使用单一阈值)和局部阈值(根据图像的局部特性为每个像素或区域选择阈值)。

一旦确定了阈值,就可以对图像进行二值化操作了。对于每个像素,将其灰度值与阈值进行比较。如果灰度值大于或等于阈值,则将该像素设置为白色(或255);否则,将其设置为黑色(或0)。

二值化后,可能还需要进行一些后续处理来优化结果。例如,可以使用形态学操作(如腐蚀、膨胀、开操作和闭操作)来消除噪声、连接断裂的线条或断开重叠的线条。此外,还可以进行边缘检测、特征提取等操作来进一步分析图像。

2.实现效果

复制代码
threshold (GrayImage, Region, 128, 255)

halcon的二值化我觉得非常有意思。

因为它将二值化理解成了一个提取区域的一个操作。

在我图像上的 灰度值符合我要求的这些像素我全部提取出来,组成一个区域(region)

上图中这个红色的就是区域。

变量窗口中显示了这个区域的面积(以像素计算),中心点坐标啥的。

这是提取的整个图片上的白色部分,接着提取黑色部分来看看

正常运行,没有什么问题。

相关推荐
人工智能训练几秒前
跨架构突围!X86 Ubuntu Dify 无缝迁移 Arm64 openEuler Docker 实战指南
人工智能·ubuntu·docker·容器·架构·arm64·dify
还不秃顶的计科生几秒前
AI生成ppt工具包大全
人工智能
deephub4 分钟前
BipedalWalker实战:SAC算法如何让机器人学会稳定行走
人工智能·机器学习·机器人·强化学习
IT_陈寒4 分钟前
3个90%开发者都误解的JavaScript原型陷阱:从proto到class的深度剖析
前端·人工智能·后端
23遇见6 分钟前
AI与贫富差距:是平衡秤还是分水岭?
人工智能
学术小白人7 分钟前
第一轮征稿!2026年区块链技术与基础模型国际学术会议(BTFM 2026)
人工智能·计算机·区块链·艺术·工程·rdlink研发家
LCG米8 分钟前
Armv9 Cortex-A320边缘计算平台初体验:运行10亿参数模型的可能性探索
人工智能·边缘计算
数据的世界019 分钟前
重构智慧书-第4条:让 “有识有胆” 的智慧更具现实张力
人工智能
玖日大大10 分钟前
GenFlow 3.0:重构生成式 AI 工作流的新一代智能编排平台
人工智能·chatgpt·文心一言
存内计算开发者12 分钟前
存算一体架构在空间计算中的应用
人工智能·神经网络·机器学习·计算机视觉·架构·空间计算·存算一体