HALCON-从入门到入门-最常用的算子-二值化

1.废话

图像处理中的二值化是一种将灰度图像转换为只有两种可能值(通常是0和255,分别代表黑色和白色)的过程。这个过程在数字图像处理中非常常见,因为它可以简化图像数据,突出图像的主要特征,并降低后续处理的复杂性。

二值化的关键步骤之一是选择一个阈值。这个阈值将用于确定图像中的每个像素是应该被赋予0(黑色)还是255(白色)。有许多方法可以用来确定这个阈值,包括全局阈值(对整个图像使用单一阈值)和局部阈值(根据图像的局部特性为每个像素或区域选择阈值)。

一旦确定了阈值,就可以对图像进行二值化操作了。对于每个像素,将其灰度值与阈值进行比较。如果灰度值大于或等于阈值,则将该像素设置为白色(或255);否则,将其设置为黑色(或0)。

二值化后,可能还需要进行一些后续处理来优化结果。例如,可以使用形态学操作(如腐蚀、膨胀、开操作和闭操作)来消除噪声、连接断裂的线条或断开重叠的线条。此外,还可以进行边缘检测、特征提取等操作来进一步分析图像。

2.实现效果

复制代码
threshold (GrayImage, Region, 128, 255)

halcon的二值化我觉得非常有意思。

因为它将二值化理解成了一个提取区域的一个操作。

在我图像上的 灰度值符合我要求的这些像素我全部提取出来,组成一个区域(region)

上图中这个红色的就是区域。

变量窗口中显示了这个区域的面积(以像素计算),中心点坐标啥的。

这是提取的整个图片上的白色部分,接着提取黑色部分来看看

正常运行,没有什么问题。

相关推荐
IT_陈寒17 小时前
7个Java Stream API的隐藏技巧,让你的代码效率提升50%
前端·人工智能·后端
weixin_3077791318 小时前
构建下一代法律智能助手:需求分析、资源整合与系统设计
人工智能·深度学习·机器学习·需求分析
夫唯不争,故无尤也18 小时前
深度学习Adam优化器核心概念全解析:参数,梯度,一阶动量,二阶动量
pytorch·深度学习·机器学习
草莓熊Lotso18 小时前
Linux 权限管理进阶:从 umask 到粘滞位的深度解析
linux·运维·服务器·人工智能·ubuntu·centos·unix
美狐美颜sdk20 小时前
直播美颜SDK特效功能实战:从API调用到效果调优的全过程
人工智能·1024程序员节·美颜sdk·直播美颜sdk·第三方美颜sdk
sali-tec1 天前
C# 基于halcon的视觉工作流-章56-彩图转云图
人工智能·算法·计算机视觉·c#
梦想画家1 天前
基于PyTorch的时间序列异常检测管道构建指南
人工智能·pytorch·python
Elastic 中国社区官方博客1 天前
在 Elasticsearch 中使用 Mistral Chat completions 进行上下文工程
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
一碗绿豆汤1 天前
机器学习第二阶段
人工智能·机器学习
用什么都重名1 天前
DeepSeek-OCR 深度解析
人工智能·ocr·deepseek-ocr