GCB | 基于36年5个生态系统观测数据发现表层土壤深度提高生态系统的生产力和稳定性

陆地生态系统生产力对全球粮食安全和促进碳固存至关重要,但生产力受到气候变化以及火灾、干旱、洪水、霜冻频率增加和生物多样性减少的压力。了解控制生态系统初级生产力变异的不同因素和机制,为维持生态系统初级生产力和增强生态系统恢复力提供了科学依据。土壤是陆地碳、养分和生物群的主要储存库,是植物生长和全球生态系统繁荣的核心栖息地。肥沃的土壤不仅能提高作物产量,还能增强对气候变化的适应能力。大多数研究集中在生物方面或在农田中进行。然而,土壤性质和机制对所有陆地生态系统都很重要。

**该研究团队利用36年间(1986-2021年)美国5个生态系统(农田、森林、草地、牧场、灌丛)的全国范围内的表层土壤深度观测数据(n = 2401)和总初级生产力(GPP)的多尺度数据集,研究表层土壤深度对生态系统生产力的控制作用。**目标是解决以下问题:(1)表土深度与GPP的关系在不同的生态系统中是否一致(例如,自然生态系统与管理生态系统)?(2)这种关系是否受到不同气候条件的影响?(3)与其他环境控制因素相比,这种关系对GPP的影响有多强?(4)表层土壤深度对生态系统生产力对气候变化的敏感性有多大影响?

研究发现:表层土壤深度与GPP之间的关系主要与水分有效性有关,这在干旱地区的草地、灌丛和农田下尤为显著(r 分别为0.37、0.32、0.15,p< 0.0001)。在干旱区,表层土壤深度每增加10 cm, GPP增加114 ~ 128 g C m−2每年。在保持其他变量(气候、植被、母质、土壤类型)不变的情况下,表土深度对GPP的正向控制主要发生在农田(0.73,置信区间为0.57 ~ 0.84)和灌木地(0.75,置信区间为0.40 ~ 0.94)。深层表层土与浅层表层土的GPP差异较小,无统计学差异。表层土壤深度对干旱区生产力有正向控制作用,但其贡献(系数:0.09 ~ 0.33)与热(系数:0.06 ~ 0.39)相似,低于水(系数:0.07 ~ 0.87)。不同生态系统和气候区的生态系统生产力对极端气候的适应能力存在差异。 表层土壤深度增加了极端气候条件下大多数生态系统的稳定性,降低了GPP的变异性,特别是在灌丛和草地中。 干旱区表土的保持、土壤深度表征和水分保持机制的改善对气候变化下的固碳生态系统服务至关重要。这些发现和关系也应该包括在地球系统模型中。

图1 美国(CONUS)五个生态系统表土深度和总初级生产力(GPP)

原文链接 ↓

https://doi.org/10.1111/gcb.16944

本文首发于"生态学者"微信公众号!

相关推荐
訾博ZiBo几秒前
AI日报 - 2025年3月7日
人工智能
梓羽玩Python3 分钟前
一夜刷屏AI圈!Manus:这不是聊天机器人,是你的“AI打工仔”!
人工智能
Gene_INNOCENT4 分钟前
大型语言模型训练的三个阶段:Pre-Train、Instruction Fine-tuning、RLHF (PPO / DPO / GRPO)
人工智能·深度学习·语言模型
游戏智眼5 分钟前
中国团队发布通用型AI Agent产品Manus;GPT-4.5正式面向Plus用户推出;阿里发布并开源推理模型通义千问QwQ-32B...|游戏智眼日报
人工智能·游戏·游戏引擎·aigc
挣扎与觉醒中的技术人6 分钟前
如何优化FFmpeg拉流性能及避坑指南
人工智能·深度学习·性能优化·ffmpeg·aigc·ai编程
watersink10 分钟前
Dify框架下的基于RAG流程的政务检索平台
人工智能·深度学习·机器学习
脑极体13 分钟前
在MWC2025,读懂华为如何以行践言
大数据·人工智能·华为
DeepBI16 分钟前
AI+大数据:DeepBI重构竞品分析新思路
人工智能
KoiC17 分钟前
内网环境部署Deepseek+Dify,构建企业私有化AI应用
linux·人工智能·ubuntu·docker·大模型·ai应用·deepseek
lizz3119 分钟前
机器学习中的线性代数:奇异值分解 SVD
线性代数·算法·机器学习