刚体运动描述:欧拉角与四元数

在机器人学中,刚体的运动描述是非常重要的,特别是当我们需要精确控制机器人的姿态时。欧拉角和四元数是两种常用的描述刚体在三维空间中旋转的方法。下面将分别介绍这两种方法并给出其特点。

欧拉角

定义与特点

  1. 定义:欧拉角是通过绕一个三维坐标系的三个轴依次旋转来定义的,通常按照某个固定的旋转顺序(如XYZ、ZYX等)进行。
  2. 表示:欧拉角由三个角度组成,分别对应绕三个坐标轴的旋转。例如,在RPY(Roll-Pitch-Yaw)表示法中,Roll是绕X轴的旋转,Pitch是绕Y轴的旋转,Yaw是绕Z轴的旋转。
  3. 问题:欧拉角存在一个被称为"万向节锁"的奇异现象。当第二个旋转轴的角度为90°或其倍数时,系统会丢失一个自由度,导致旋转矩阵的某个列为常数,从而在求解欧拉角时出现多解情况。

四元数

定义与特点

  1. 定义 :四元数是一个四维向量,可以表示为q = w + xi + yj + zk,其中w是实数部分(或标量部分),而x, y, z是虚数部分(或向量部分)。四元数通常用于表示三维空间中的旋转。
  2. 与旋转的关系 :一个四元数q可以表示绕一个通过原点的轴旋转某个角度的操作。具体来说,如果有一个轴定义为单位向量[rx, ry, rz],旋转角度为θ,则对应的四元数为q = [cos(θ/2), sin(θ/2)rx, sin(θ/2)ry, sin(θ/2)rz]
  3. 优势:四元数避免了欧拉角的万向节锁问题,因为它在表示旋转时使用了四个参数而不是三个,从而能够更稳定地描述旋转。此外,四元数在插值和组合旋转方面也具有优势。
相关推荐
JohnFF20 分钟前
48. 旋转图像
数据结构·算法·leetcode
bbc12122620 分钟前
AT_abc306_b [ABC306B] Base 2
算法
生锈的键盘29 分钟前
推荐算法实践:movielens数据集
算法
董董灿是个攻城狮29 分钟前
Transformer 通关秘籍9:词向量的数值实际上是特征
算法
林泽毅38 分钟前
SwanLab x EasyR1:多模态LLM强化学习后训练组合拳,让模型进化更高效
算法·llm·强化学习
小林熬夜学编程40 分钟前
【高并发内存池】第八弹---脱离new的定长内存池与多线程malloc测试
c语言·开发语言·数据结构·c++·算法·哈希算法
刚入门的大一新生1 小时前
归并排序延伸-非递归版本
算法·排序算法
独好紫罗兰1 小时前
洛谷题单3-P1980 [NOIP 2013 普及组] 计数问题-python-流程图重构
开发语言·python·算法
独好紫罗兰1 小时前
洛谷题单3-P1009 [NOIP 1998 普及组] 阶乘之和-python-流程图重构
开发语言·python·算法
曦月逸霜1 小时前
蓝桥杯高频考点——高精度(含C++源码)
c++·算法·蓝桥杯