刚体运动描述:欧拉角与四元数

在机器人学中,刚体的运动描述是非常重要的,特别是当我们需要精确控制机器人的姿态时。欧拉角和四元数是两种常用的描述刚体在三维空间中旋转的方法。下面将分别介绍这两种方法并给出其特点。

欧拉角

定义与特点

  1. 定义:欧拉角是通过绕一个三维坐标系的三个轴依次旋转来定义的,通常按照某个固定的旋转顺序(如XYZ、ZYX等)进行。
  2. 表示:欧拉角由三个角度组成,分别对应绕三个坐标轴的旋转。例如,在RPY(Roll-Pitch-Yaw)表示法中,Roll是绕X轴的旋转,Pitch是绕Y轴的旋转,Yaw是绕Z轴的旋转。
  3. 问题:欧拉角存在一个被称为"万向节锁"的奇异现象。当第二个旋转轴的角度为90°或其倍数时,系统会丢失一个自由度,导致旋转矩阵的某个列为常数,从而在求解欧拉角时出现多解情况。

四元数

定义与特点

  1. 定义 :四元数是一个四维向量,可以表示为q = w + xi + yj + zk,其中w是实数部分(或标量部分),而x, y, z是虚数部分(或向量部分)。四元数通常用于表示三维空间中的旋转。
  2. 与旋转的关系 :一个四元数q可以表示绕一个通过原点的轴旋转某个角度的操作。具体来说,如果有一个轴定义为单位向量[rx, ry, rz],旋转角度为θ,则对应的四元数为q = [cos(θ/2), sin(θ/2)rx, sin(θ/2)ry, sin(θ/2)rz]
  3. 优势:四元数避免了欧拉角的万向节锁问题,因为它在表示旋转时使用了四个参数而不是三个,从而能够更稳定地描述旋转。此外,四元数在插值和组合旋转方面也具有优势。
相关推荐
乌萨奇也要立志学C++10 小时前
【洛谷】BFS 求解最短路:从马的遍历到迷宫问题的实战解析
算法·宽度优先
老鼠只爱大米10 小时前
LeetCode经典算法面试题 #46:全排列(回溯、交换、剪枝等五种实现方案详细解析)
算法·leetcode·剪枝·回溯·全排列·stj算法
Dovis(誓平步青云)10 小时前
《滑动窗口算法:从 “暴力遍历” 到 “线性高效” 的思维跃迁》
运维·服务器·数据库·算法
_OP_CHEN11 小时前
【算法基础篇】(五十七)线性代数之矩阵乘法从入门到实战:手撕模板 + 真题详解
线性代数·算法·矩阵·蓝桥杯·c/c++·矩阵乘法·acm/icpc
天天爱吃肉821811 小时前
【跨界封神|周杰伦×王传福(陶晶莹主持):音乐创作与新能源NVH测试,底层逻辑竟完全同源!(新人必看入行指南)】
python·嵌入式硬件·算法·汽车
im_AMBER11 小时前
Leetcode 114 链表中的下一个更大节点 | 删除排序链表中的重复元素 II
算法·leetcode
xhbaitxl11 小时前
算法学习day38-动态规划
学习·算法·动态规划
多恩Stone11 小时前
【3D AICG 系列-6】OmniPart 训练流程梳理
人工智能·pytorch·算法·3d·aigc
历程里程碑11 小时前
普通数组----轮转数组
java·数据结构·c++·算法·spring·leetcode·eclipse
pp起床11 小时前
贪心算法 | part02
算法·leetcode·贪心算法