C# Onnx E2Pose人体关键点检测

C# Onnx E2Pose人体关键点检测

目录

效果

模型信息

项目

代码

下载


效果

模型信息

Inputs


name:inputimg

tensor:Float[1, 3, 512, 512]


Outputs


name:kvxy/concat

tensor:Float[1, 341, 17, 3]

name:pv/concat

tensor:Float[1, 341, 1, 1]


项目

代码

using Microsoft.ML.OnnxRuntime;

using Microsoft.ML.OnnxRuntime.Tensors;

using OpenCvSharp;

using System;

using System.Collections.Generic;

using System.Drawing;

using System.Drawing.Imaging;

using System.Linq;

using System.Windows.Forms;

namespace Onnx_Demo

{

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

string image_path = "";

string startupPath;

DateTime dt1 = DateTime.Now;

DateTime dt2 = DateTime.Now;

string model_path;

Mat image;

Mat result_image;

SessionOptions options;

InferenceSession onnx_session;

Tensor<float> input_tensor;

List<NamedOnnxValue> input_container;

IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;

DisposableNamedOnnxValue[] results_onnxvalue;

Tensor<float> result_tensors;

int inpHeight, inpWidth;

float confThreshold;

int[] connect_list = { 0, 1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 6, 5, 7, 7, 9, 6, 8, 8, 10, 5, 11, 6, 12, 11, 12, 11, 13, 13, 15, 12, 14, 14, 16 };

private void button1_Click(object sender, EventArgs e)

{

OpenFileDialog ofd = new OpenFileDialog();

ofd.Filter = fileFilter;

if (ofd.ShowDialog() != DialogResult.OK) return;

pictureBox1.Image = null;

image_path = ofd.FileName;

pictureBox1.Image = new Bitmap(image_path);

textBox1.Text = "";

image = new Mat(image_path);

pictureBox2.Image = null;

}

unsafe private void button2_Click(object sender, EventArgs e)

{

if (image_path == "")

{

return;

}

button2.Enabled = false;

pictureBox2.Image = null;

textBox1.Text = "";

Application.DoEvents();

//读图片

image = new Mat(image_path);

//将图片转为RGB通道

Mat image_rgb = new Mat();

Cv2.CvtColor(image, image_rgb, ColorConversionCodes.BGR2RGB);

Cv2.Resize(image_rgb, image_rgb, new OpenCvSharp.Size(inpHeight, inpWidth));

//输入Tensor

input_tensor = new DenseTensor<float>(new[] { 1, 3, inpHeight, inpWidth });

for (int y = 0; y < image_rgb.Height; y++)

{

for (int x = 0; x < image_rgb.Width; x++)

{

input_tensor[0, 0, y, x] = image_rgb.At<Vec3b>(y, x)[0];

input_tensor[0, 1, y, x] = image_rgb.At<Vec3b>(y, x)[1];

input_tensor[0, 2, y, x] = image_rgb.At<Vec3b>(y, x)[2];

}

}

//将 input_tensor 放入一个输入参数的容器,并指定名称

input_container.Add(NamedOnnxValue.CreateFromTensor("inputimg", input_tensor));

dt1 = DateTime.Now;

//运行 Inference 并获取结果

result_infer = onnx_session.Run(input_container);

dt2 = DateTime.Now;

// 将输出结果转为DisposableNamedOnnxValue数组

results_onnxvalue = result_infer.ToArray();

float[] kpt = results_onnxvalue[0].AsTensor<float>().ToArray();

float[] pv = results_onnxvalue[1].AsTensor<float>().ToArray();

float[] temp = new float[51];

int num_proposal = 341;

int num_pts = 17;

int len = num_pts * 3;

List<List<int>> results = new List<List<int>>();

for (int i = 0; i < num_proposal; i++)

{

Array.Copy(kpt, i * 51, temp, 0, 51);

if (pv[i] >= confThreshold)

{

List<int> human_pts = new List<int>();

for (int ii = 0; ii < num_pts * 2; ii++)

{

human_pts.Add(0);

}

for (int j = 0; j < num_pts; j++)

{

float score = temp[j * 3] * 2;

if (score >= confThreshold)

{

float x = temp[j * 3 + 1] * image.Cols;

float y = temp[j * 3 + 2] * image.Rows;

human_pts[j * 2] = (int)x;

human_pts[j * 2 + 1] = (int)y;

}

}

results.Add(human_pts);

}

}

result_image = image.Clone();

int start_x = 0;

int start_y = 0;

int end_x = 0;

int end_y = 0;

for (int i = 0; i < results.Count; ++i)

{

for (int j = 0; j < num_pts; j++)

{

int cx = results[i][j * 2];

int cy = results[i][j * 2 + 1];

if (cx > 0 && cy > 0)

{

Cv2.Circle(result_image, new OpenCvSharp.Point(cx, cy), 3, new Scalar(0, 0, 255), -1, LineTypes.AntiAlias);

}

start_x = results[i][connect_list[j * 2] * 2];

start_y = results[i][connect_list[j * 2] * 2 + 1];

end_x = results[i][connect_list[j * 2 + 1] * 2];

end_y = results[i][connect_list[j * 2 + 1] * 2 + 1];

if (start_x > 0 && start_y > 0 && end_x > 0 && end_y > 0)

{

Cv2.Line(result_image, new OpenCvSharp.Point(start_x, start_y), new OpenCvSharp.Point(end_x, end_y), new Scalar(0, 255, 0), 2, LineTypes.AntiAlias);

}

}

start_x = results[i][connect_list[num_pts * 2] * 2];

start_y = results[i][connect_list[num_pts * 2] * 2 + 1];

end_x = results[i][connect_list[num_pts * 2 + 1] * 2];

end_y = results[i][connect_list[num_pts * 2 + 1] * 2 + 1];

if (start_x > 0 && start_y > 0 && end_x > 0 && end_y > 0)

{

Cv2.Line(result_image, new OpenCvSharp.Point(start_x, start_y), new OpenCvSharp.Point(end_x, end_y), new Scalar(0, 255, 0), 2, LineTypes.AntiAlias);

}

}

pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());

textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

button2.Enabled = true;

}

private void Form1_Load(object sender, EventArgs e)

{

startupPath = System.Windows.Forms.Application.StartupPath;

model_path = "model/e2epose_resnet50_1x3x512x512.onnx";

// 创建输出会话,用于输出模型读取信息

options = new SessionOptions();

options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;

options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

// 创建推理模型类,读取本地模型文件

onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

// 创建输入容器

input_container = new List<NamedOnnxValue>();

image_path = "test_img/1.jpg";

pictureBox1.Image = new Bitmap(image_path);

image = new Mat(image_path);

inpWidth = 512;

inpHeight = 512;

confThreshold = 0.5f;

}

private void pictureBox1_DoubleClick(object sender, EventArgs e)

{

Common.ShowNormalImg(pictureBox1.Image);

}

private void pictureBox2_DoubleClick(object sender, EventArgs e)

{

Common.ShowNormalImg(pictureBox2.Image);

}

SaveFileDialog sdf = new SaveFileDialog();

private void button3_Click(object sender, EventArgs e)

{

if (pictureBox2.Image == null)

{

return;

}

Bitmap output = new Bitmap(pictureBox2.Image);

sdf.Title = "保存";

sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";

if (sdf.ShowDialog() == DialogResult.OK)

{

switch (sdf.FilterIndex)

{

case 1:

{

output.Save(sdf.FileName, ImageFormat.Jpeg);

break;

}

case 2:

{

output.Save(sdf.FileName, ImageFormat.Png);

break;

}

case 3:

{

output.Save(sdf.FileName, ImageFormat.Bmp);

break;

}

}

MessageBox.Show("保存成功,位置:" + sdf.FileName);

}

}

}

}

复制代码
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.Linq;
using System.Windows.Forms;

namespace Onnx_Demo
{
    public partial class Form1 : Form
    {
        public Form1()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat result_image;
        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        List<NamedOnnxValue> input_container;
        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;
        Tensor<float> result_tensors;
        int inpHeight, inpWidth;
        float confThreshold;

        int[] connect_list = { 0, 1, 0, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 6, 5, 7, 7, 9, 6, 8, 8, 10, 5, 11, 6, 12, 11, 12, 11, 13, 13, 15, 12, 14, 14, 16 };

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }

        unsafe private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";
            Application.DoEvents();

            //读图片
            image = new Mat(image_path);

            //将图片转为RGB通道
            Mat image_rgb = new Mat();
            Cv2.CvtColor(image, image_rgb, ColorConversionCodes.BGR2RGB);

            Cv2.Resize(image_rgb, image_rgb, new OpenCvSharp.Size(inpHeight, inpWidth));

            //输入Tensor
            input_tensor = new DenseTensor<float>(new[] { 1, 3, inpHeight, inpWidth });
            for (int y = 0; y < image_rgb.Height; y++)
            {
                for (int x = 0; x < image_rgb.Width; x++)
                {
                    input_tensor[0, 0, y, x] = image_rgb.At<Vec3b>(y, x)[0];
                    input_tensor[0, 1, y, x] = image_rgb.At<Vec3b>(y, x)[1];
                    input_tensor[0, 2, y, x] = image_rgb.At<Vec3b>(y, x)[2];
                }
            }

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_container.Add(NamedOnnxValue.CreateFromTensor("inputimg", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_container);
            dt2 = DateTime.Now;

            // 将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            float[] kpt = results_onnxvalue[0].AsTensor<float>().ToArray();
            float[] pv = results_onnxvalue[1].AsTensor<float>().ToArray();

            float[] temp = new float[51];

            int num_proposal = 341;
            int num_pts = 17;
            int len = num_pts * 3;

            List<List<int>> results = new List<List<int>>();
            for (int i = 0; i < num_proposal; i++)
            {
                Array.Copy(kpt, i * 51, temp, 0, 51);

                if (pv[i] >= confThreshold)
                {
                    List<int> human_pts = new List<int>();
                    for (int ii = 0; ii < num_pts * 2; ii++)
                    {
                        human_pts.Add(0);
                    }

                    for (int j = 0; j < num_pts; j++)
                    {
                        float score = temp[j * 3] * 2;
                        if (score >= confThreshold)
                        {
                            float x = temp[j * 3 + 1] * image.Cols;
                            float y = temp[j * 3 + 2] * image.Rows;
                            human_pts[j * 2] = (int)x;
                            human_pts[j * 2 + 1] = (int)y;
                        }
                    }
                    results.Add(human_pts);
                }
            }

            result_image = image.Clone();
            int start_x = 0;
            int start_y = 0;
            int end_x = 0;
            int end_y = 0;

            for (int i = 0; i < results.Count; ++i)
            {
                for (int j = 0; j < num_pts; j++)
                {
                    int cx = results[i][j * 2];
                    int cy = results[i][j * 2 + 1];
                    if (cx > 0 && cy > 0)
                    {
                        Cv2.Circle(result_image, new OpenCvSharp.Point(cx, cy), 3, new Scalar(0, 0, 255), -1, LineTypes.AntiAlias);
                    }

                    start_x = results[i][connect_list[j * 2] * 2];
                    start_y = results[i][connect_list[j * 2] * 2 + 1];
                    end_x = results[i][connect_list[j * 2 + 1] * 2];
                    end_y = results[i][connect_list[j * 2 + 1] * 2 + 1];

                    if (start_x > 0 && start_y > 0 && end_x > 0 && end_y > 0)
                    {
                        Cv2.Line(result_image, new OpenCvSharp.Point(start_x, start_y), new OpenCvSharp.Point(end_x, end_y), new Scalar(0, 255, 0), 2, LineTypes.AntiAlias);
                    }
                }

                start_x = results[i][connect_list[num_pts * 2] * 2];
                start_y = results[i][connect_list[num_pts * 2] * 2 + 1];
                end_x = results[i][connect_list[num_pts * 2 + 1] * 2];
                end_y = results[i][connect_list[num_pts * 2 + 1] * 2 + 1];

                if (start_x > 0 && start_y > 0 && end_x > 0 && end_y > 0)
                {
                    Cv2.Line(result_image, new OpenCvSharp.Point(start_x, start_y), new OpenCvSharp.Point(end_x, end_y), new Scalar(0, 255, 0), 2, LineTypes.AntiAlias);
                }
            }

            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

            button2.Enabled = true;

        }

        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = "model/e2epose_resnet50_1x3x512x512.onnx";

            // 创建输出会话,用于输出模型读取信息
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/1.jpg";
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);

            inpWidth = 512;
            inpHeight = 512;

            confThreshold = 0.5f;

        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        SaveFileDialog sdf = new SaveFileDialog();
        private void button3_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }
        }
    }
}

下载

源码下载

相关推荐
TO ENFJ7 分钟前
day 10 机器学习建模与评估
人工智能·机器学习
高效匠人10 分钟前
文章五《卷积神经网络(CNN)与图像处理》
图像处理·人工智能·python·cnn
卧式纯绿21 分钟前
卷积神经网络基础(五)
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·cnn
乌恩大侠22 分钟前
【东枫科技】代理销售 NVIDIA DGX Spark 您的桌上有一台 Grace Blackwell AI 超级计算机。
大数据·人工智能·科技·spark·nvidia
zhanzhan010937 分钟前
ubantu安装CUDA
人工智能·python·深度学习
VB.Net38 分钟前
C# 综合示例 库存管理系统20 操作员管理(FormAdmin)
开发语言·数据库·c#
IT古董40 分钟前
【漫话机器学习系列】243.数值下溢(Underflow)
人工智能·机器学习
奋斗者1号41 分钟前
《机器学习中的过拟合与模型复杂性:理解与应对策略》
人工智能·机器学习
Blossom.11842 分钟前
机器学习在网络安全中的应用:守护数字世界的防线
人工智能·深度学习·神经网络·安全·web安全·机器学习·计算机视觉
Ven%1 小时前
LangChain:大语言模型应用的“瑞士军刀”入门指南
人工智能·语言模型·langchain