18、matlab信号生成与预处理--剔除异常值:hampel()函数

1、语法

说明:对输入向量x应用Hampel滤波器来检测和去除异常值。

1)y = hampel(x) 参数:x:输入信号 y:预处理的输出信号

对于x的每个样本,函数计算由样本及其周围的六个样本组成的窗口的中位数,每边三个。它还使用中位数绝对偏差估计每个样本关于其窗口中位数的标准偏差。如果样本与中位数相差超过三个标准差,则将其替换为中位数。如果x是一个矩阵,那么该函数将x的每一列视为一个独立的通道。

2)[y,j] = hampel(x) 参数:x:输入信号 y:预处理的输出信号 j:离群指数(0/1表示,1离群)

返回一个逻辑矩阵,该矩阵在标识为离群值的所有点的位置为真

3)[y,j,xmedian,xsigma] = hampel(x)

参数: x:输入信号 y:预处理的输出信号 j:离群指数(0/1表示,1离群) xmedian:中位数 xsigma:估计标准差

返回x的每个元素的局部中位数和估计标准差。

4)y = hampel(x,k) 参数:x:输入信号 y:预处理的输出信号 k:样本两侧数据数

指定测量窗口中x的每个样本两侧的邻居k的数量。K默认为3。

5)y = hampel(x,k,nsigma)

指定若干个标准差,x的样本必须与局部中位数不同,才能被替换为中位数。sigma默认为3。

2、单通道信号生成与预处理

1)单通道信号生成

代码

Matlab 复制代码
x = sin(4*pi*(0:199)/200);%输入值
x(6) = 2.5;%异常点1
x(20) = -3;%异常点2
x(120) = 2.5;%异常点3
x(180) = -3;%异常点4
n = 1:length(x);
figure(1)
plot(n,x,'color','r')%加入异常数据

视图效果

2)单通道信号处理:hampel()函数

代码

Matlab 复制代码
x = sin(4*pi*(0:199)/200);%输入值
x(6) = 2.5;%异常点1
x(20) = -3;%异常点2
x(120) = 2.5;%异常点3
x(180) = -3;%异常点4
n = 1:length(x);
figure(1)
plot(n,x,'color','r')%加入异常数据
hold on;
[y,j,xmedian,xsigma] = hampel(x,4);
plot(n,y,'^','color','g')%预处理数据
plot(n,xmedian,'^','color','b')%中位数
plot(n,xsigma,'*','color','y')%标准差
a=find(j);%find()函数:返回非零元素 索引
plot(a,x(j),'s','color','k')
legend('异常','预处理','中位数','估计标准差','离群点')

视图效果

3)单通道信号处理参数调整

代码

Matlab 复制代码
hampel(x,2)%调整k参数

k=2/4/6/8效果图

3、双通道信号生成与预处理

1)双通道信号生成

代码

Matlab 复制代码
rng('default')%控制随机函数生成
n = 100;
x = sin(pi./[10 20]'*(1:n)+pi/6)';%双通道信号生成
figure(1)
plot(x)
sy= randi(100,9,1);%添加异常参数的索引//100以内,9行1列的矩阵 
x(sy) = x(sy)*2.2;%添加异常参数
x(randi(100,6,1)) = NaN;%添加异常 缺失参数
figure(2)
plot(x)

视图效果

2)双通道信号处理(处理异常点和数据缺失)

代码:

Matlab 复制代码
figure(3)
y = hampel(x,4);
plot(y)
figure(4)
[y,j,xmedian,xsigma] = hampel(x,4,2);
plot(y)
hold on
plot(xmedian,'^')

试图效果

相关推荐
千金裘换酒23 分钟前
LeetCode 移动零元素 快慢指针
算法·leetcode·职场和发展
北辰alk30 分钟前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云33 分钟前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm104342 分钟前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
NAGNIP44 分钟前
一文搞懂机器学习线性代数基础知识!
算法
NAGNIP1 小时前
机器学习入门概述一览
算法
沈询-阿里1 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1781 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
盛世宏博北京1 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
Learn-Python1 小时前
MongoDB-only方法
python·sql