transformer理解

1.gpt基于transformer(本质是加权求和) 基于注意力机制

2.注意力机制是为了编解码服务的

3.编码解码中的码是"剥离了英语中文这种类别之外的单纯的语义关系",比如香蕉的语义相近的就应该是猴子,黄色,无论中文还是英语,都是这样的语义关系

4.tokenizer(分词器)和one hot(独热编码)对最基础的语义单元(字母/单词)(token)数字化

分词器:很难表达出复杂的语义关系;独热编码:所有的token都是一个独立的,很难体现之间的语义关系

5.潜空间:找到这个潜空间(一个方法是升维,一个是对独热编码降维)

6.神经网络中的隐藏层,神经网络实现非线性变化,神经网络实现升维和降维

  1. 编码就是将文本里面的token编成独热码,然后进行降维,相当于把输入的一句话根据语义投射到一个潜空间里,高维---->低维,这个过程叫embedding,也就是嵌入,这个过程也叫做词嵌入,因为使用的是矩阵乘法,所以将token投入到潜空间的矩阵叫做嵌入矩阵

然后根据潜空间进行翻译等各种处理(我的理解就是将各种输入,无论英文汉语,都提取出来,形成一个只包含纯粹的语义关系的潜空间)

NLP里每个维度对应的是基础语义,图片里对应的是通道(三色)

8.如何找到实现降维的嵌入矩阵?

Word2Vec(结果是得到嵌入矩阵),不需要激活函数

9.利用CBOW去评估得到word2vec(合力,分力)

10.利用skip-gram去评估得到word2vec(已知一个token,推断上下文token,然后判断对不对,和cbow相反)

11.对于词和词组合后的理解靠的就是注意力机制(transformer的核心)

注意力机制输入的是一组词向量,注意力机制要解决美女,让一让和美女,加一下微信,这种上下文对美女美丽程度的影响

A'上下文关联的修改系数

12.选择两个矩阵相乘Wq,Wk是为了让模型可以表达更复杂的情况

13.注意力机制:从一个多义词中,比如苹果,选择一个表达

14.自注意力机制,交叉注意力(做翻译比较ok)

15.训练过程

16.有的大模型只用解码器,编码器

17.相对位置编码:为了保证的token的先后顺序,在并行计算的同时

18.多头注意力机制:比卷积神经网络更好,可以跨越,结果更灵活,transformer叠加了很多层

19.掩码

文章来源于从编解码和词嵌入开始,一步一步理解Transformer,注意力机制(Attention)的本质是卷积神经网络(CNN)_哔哩哔哩_bilibili

相关推荐
Jinkxs3 分钟前
告别“测试滞后”:AI实时测试工具在敏捷开发中的落地经验
人工智能·测试工具·敏捷流程
七元权4 分钟前
论文阅读-Gated CRF Loss for Weakly Supervised Semantic Image Segmentation
论文阅读·深度学习·计算机视觉·语义分割·弱监督
John_ToDebug24 分钟前
大模型提示词(Prompt)终极指南:从原理到实战,让AI输出质量提升300%
人工智能·chatgpt·prompt
居然JuRan24 分钟前
LangGraph从0到1:开启大模型开发新征程
人工智能
双向3333 分钟前
实战测试:多模态AI在文档解析、图表分析中的准确率对比
人工智能
用户51914958484535 分钟前
1989年的模糊测试技术如何在2018年仍发现Linux漏洞
人工智能·aigc
人类发明了工具36 分钟前
【深度学习-基础知识】单机多卡和多机多卡训练
人工智能·深度学习
用户5191495848451 小时前
检索增强生成(RAG)入门指南:构建知识库与LLM协同系统
人工智能·aigc
CoovallyAIHub1 小时前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
CoovallyAIHub1 小时前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉