transformer理解

1.gpt基于transformer(本质是加权求和) 基于注意力机制

2.注意力机制是为了编解码服务的

3.编码解码中的码是"剥离了英语中文这种类别之外的单纯的语义关系",比如香蕉的语义相近的就应该是猴子,黄色,无论中文还是英语,都是这样的语义关系

4.tokenizer(分词器)和one hot(独热编码)对最基础的语义单元(字母/单词)(token)数字化

分词器:很难表达出复杂的语义关系;独热编码:所有的token都是一个独立的,很难体现之间的语义关系

5.潜空间:找到这个潜空间(一个方法是升维,一个是对独热编码降维)

6.神经网络中的隐藏层,神经网络实现非线性变化,神经网络实现升维和降维

  1. 编码就是将文本里面的token编成独热码,然后进行降维,相当于把输入的一句话根据语义投射到一个潜空间里,高维---->低维,这个过程叫embedding,也就是嵌入,这个过程也叫做词嵌入,因为使用的是矩阵乘法,所以将token投入到潜空间的矩阵叫做嵌入矩阵

然后根据潜空间进行翻译等各种处理(我的理解就是将各种输入,无论英文汉语,都提取出来,形成一个只包含纯粹的语义关系的潜空间)

NLP里每个维度对应的是基础语义,图片里对应的是通道(三色)

8.如何找到实现降维的嵌入矩阵?

Word2Vec(结果是得到嵌入矩阵),不需要激活函数

9.利用CBOW去评估得到word2vec(合力,分力)

10.利用skip-gram去评估得到word2vec(已知一个token,推断上下文token,然后判断对不对,和cbow相反)

11.对于词和词组合后的理解靠的就是注意力机制(transformer的核心)

注意力机制输入的是一组词向量,注意力机制要解决美女,让一让和美女,加一下微信,这种上下文对美女美丽程度的影响

A'上下文关联的修改系数

12.选择两个矩阵相乘Wq,Wk是为了让模型可以表达更复杂的情况

13.注意力机制:从一个多义词中,比如苹果,选择一个表达

14.自注意力机制,交叉注意力(做翻译比较ok)

15.训练过程

16.有的大模型只用解码器,编码器

17.相对位置编码:为了保证的token的先后顺序,在并行计算的同时

18.多头注意力机制:比卷积神经网络更好,可以跨越,结果更灵活,transformer叠加了很多层

19.掩码

文章来源于从编解码和词嵌入开始,一步一步理解Transformer,注意力机制(Attention)的本质是卷积神经网络(CNN)_哔哩哔哩_bilibili

相关推荐
井底哇哇17 分钟前
ChatGPT是强人工智能吗?
人工智能·chatgpt
Coovally AI模型快速验证21 分钟前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
AI浩1 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
可为测控1 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
一水鉴天1 小时前
为AI聊天工具添加一个知识系统 之63 详细设计 之4:AI操作系统 之2 智能合约
开发语言·人工智能·python
倔强的石头1062 小时前
解锁辅助驾驶新境界:基于昇腾 AI 异构计算架构 CANN 的应用探秘
人工智能·架构
佛州小李哥2 小时前
Agent群舞,在亚马逊云科技搭建数字营销多代理(Multi-Agent)(下篇)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
IE063 小时前
深度学习系列75:sql大模型工具vanna
深度学习
不惑_3 小时前
深度学习 · 手撕 DeepLearning4J ,用Java实现手写数字识别 (附UI效果展示)
java·深度学习·ui
说私域3 小时前
社群裂变+2+1链动新纪元:S2B2C小程序如何重塑企业客户管理版图?
大数据·人工智能·小程序·开源