PyTorch学习6:多维特征输入

文章目录


前言

介绍了如何处理多维特征的输入问题

一、模型说明

多维问题分类模型

二、示例

1.求解步骤

1.载入数据集:数据集用路径D:\anaconda\Lib\site-packages\sklearn\datasets\data下的diabetes.csv,输入有8个维度

2.创建模型:维度8-6-4-2-1

3.选择损失函数和优化器

3.进行训练

2.示例代码

代码如下(示例):

python 复制代码
import numpy as np
import torch
import matplotlib.pyplot as plt

# prepare dataset
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1])  # 第一个':'是指读取所有行,第二个':'是指从第一列开始,最后一列不要
print("input data.shape", x_data.shape)
y_data = torch.from_numpy(xy[:, [-1]])  # [-1] 最后得到的是个矩阵


# print(x_data.shape)
# design model using class


class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 2)
        self.linear4 = torch.nn.Linear(2, 1)
        self.sigmoid = torch.nn.Sigmoid()

    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x))  # y hat
        x = self.sigmoid(self.linear4(x))  # y hat
        return x


model = Model()

# construct loss and optimizer
criterion = torch.nn.BCELoss(size_average = True)

optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

epoch_list = []
loss_list = []
# training cycle forward, backward, update
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    # print(epoch, loss.item())
    print(epoch, loss.item())
    epoch_list.append(epoch)
    loss_list.append(loss.item())

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if epoch % 100 == 99:
        y_pred_label = torch.where(y_pred >= 0.5, torch.tensor([1.0]), torch.tensor([0.0]))

        acc = torch.eq(y_pred_label, y_data).sum().item() / y_data.size(0)
        print("loss = ", loss.item(), "acc = ", acc)


plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

得到如下结果:

总结

PyTorch学习6:多维特征输入

相关推荐
lrlianmengba21 分钟前
推荐一款可视化和检查原始数据的工具:RawDigger
人工智能·数码相机·计算机视觉
阿_旭25 分钟前
基于YOLO11/v10/v8/v5深度学习的维修工具检测识别系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·qt·ai
YRr YRr29 分钟前
深度学习:Cross-attention详解
人工智能·深度学习
阿_旭29 分钟前
基于YOLO11/v10/v8/v5深度学习的煤矿传送带异物检测系统设计与实现【python源码+Pyqt5界面+数据集+训练代码】
人工智能·python·深度学习·目标检测·yolo11
夏天里的肥宅水34 分钟前
机器学习3_支持向量机_线性不可分——MOOC
人工智能·机器学习·支持向量机
云卓科技36 分钟前
无人车之路径规划篇
人工智能·嵌入式硬件·算法·自动驾驶
2403_875736871 小时前
道品科技的水肥一体化智能灌溉:开启现代农业的创新征程
大数据·人工智能·1024程序员节
hostpai1 小时前
FebHost:科技公司选择.TECH域名的魅力
人工智能·科技·搜索引擎·国外域名·科技域名·.tech域名
算家云1 小时前
如何在算家云搭建Aatrox-Bert-VITS2(音频生成)
人工智能·深度学习·aigc·模型搭建·音频生成·算家云
今天我又学废了1 小时前
scala学习记录,Set,Map
开发语言·学习·scala