pytorch 自定义学习率更新 Poly

Poly

学习率调整策略需要继承_LRScheduler类,该类包含三个重要属性和两个重要方法

学习率与batch-size的关系

一般来说,batch-size的大小一般与学习率的大小成正比。batch-size越大一般意味着算法收敛方向的置信度越大,也可以选择较大的学习率来加快收敛速度。而小的batch-size规律性较差,需要小的学习率保证不出错。在显存允许的情况下,选择大的batch-size。

预设规则的学习率变化法:StepLR、Multi-StepLR

自适应的学习率变化法:ExponentialLR,CosineAnnealingLR,LambdaLR,OneCycleLR,Poly

Poly学习率调整策略的优点包括:

更好的泛化能力:Poly学习率调整策略可以在训练后期逐渐降低学习率,避免过拟合,提高模型的泛化能力。

对超参数不敏感:Poly学习率调整策略的性能不太受超参数的影响,相对比较稳定。

计算量较小:Poly学习率调整策略的计算量相对较小,不会影响训练速度。

Poly学习率调整策略的缺点包括:

收敛速度较慢:Poly学习率调整策略在训练初期学习率较低,收敛速度较慢。

不适用于所有模型:Poly学习率调整策略可能不适用于所有类型的模型,需要根据具体情况进行选择。

code 如下

python 复制代码
from torch.optim.lr_scheduler import _LRSchedule
from torch.optim.optimizer import Optimizer
// 定义
class PolyLR(_LRScheduler):
    def __init__(self,optimizer,max_iters,power=0.9,last_epoch=-1,min_lr=1e-6):
        # super(PolyLR,self).__init__(optimizer,last_epoch)
        self.power = power
        self.max_iters = max_iters
        self.min_lr = min_lr
        super(PolyLR, self).__init__(optimizer, last_epoch)
    def get_lr(self) -> float:
        return [ max( base_lr * ( 1 - self.last_epoch/self.max_iters )**self.power, self.min_lr)
                for base_lr in self.base_lrs]
model = AlexNet(num_classes=2)
optimizer = torch.optim.Adam(model.parameters(),lr=0.1)
scheduler = PolyLR(optimizer, max_iters=150, power=0.9, last_epoch=-1, min_lr=1e-6)

使用方法和位置

参考链接:[1] https://blog.csdn.net/shengweiit/article/details/130649229

[2] https://blog.csdn.net/qq_31580989/article/details/121491181

相关推荐
小A1591 分钟前
STM32完全学习——SPI接口的FLASH(DMA模式)
stm32·嵌入式硬件·学习
桃花键神19 分钟前
AI可信论坛亮点:合合信息分享视觉内容安全技术前沿
人工智能
岁岁岁平安23 分钟前
spring学习(spring-DI(字符串或对象引用注入、集合注入)(XML配置))
java·学习·spring·依赖注入·集合注入·基本数据类型注入·引用数据类型注入
武昌库里写JAVA26 分钟前
Java成长之路(一)--SpringBoot基础学习--SpringBoot代码测试
java·开发语言·spring boot·学习·课程设计
qq_5895681032 分钟前
数据可视化echarts学习笔记
学习·信息可视化·echarts
野蛮的大西瓜40 分钟前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars6191 小时前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen1 小时前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝1 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
兔C1 小时前
微信小程序的轮播图学习报告
学习·微信小程序·小程序