pytorch 自定义学习率更新 Poly

Poly

学习率调整策略需要继承_LRScheduler类,该类包含三个重要属性和两个重要方法

学习率与batch-size的关系

一般来说,batch-size的大小一般与学习率的大小成正比。batch-size越大一般意味着算法收敛方向的置信度越大,也可以选择较大的学习率来加快收敛速度。而小的batch-size规律性较差,需要小的学习率保证不出错。在显存允许的情况下,选择大的batch-size。

预设规则的学习率变化法:StepLR、Multi-StepLR

自适应的学习率变化法:ExponentialLR,CosineAnnealingLR,LambdaLR,OneCycleLR,Poly

Poly学习率调整策略的优点包括:

更好的泛化能力:Poly学习率调整策略可以在训练后期逐渐降低学习率,避免过拟合,提高模型的泛化能力。

对超参数不敏感:Poly学习率调整策略的性能不太受超参数的影响,相对比较稳定。

计算量较小:Poly学习率调整策略的计算量相对较小,不会影响训练速度。

Poly学习率调整策略的缺点包括:

收敛速度较慢:Poly学习率调整策略在训练初期学习率较低,收敛速度较慢。

不适用于所有模型:Poly学习率调整策略可能不适用于所有类型的模型,需要根据具体情况进行选择。

code 如下

python 复制代码
from torch.optim.lr_scheduler import _LRSchedule
from torch.optim.optimizer import Optimizer
// 定义
class PolyLR(_LRScheduler):
    def __init__(self,optimizer,max_iters,power=0.9,last_epoch=-1,min_lr=1e-6):
        # super(PolyLR,self).__init__(optimizer,last_epoch)
        self.power = power
        self.max_iters = max_iters
        self.min_lr = min_lr
        super(PolyLR, self).__init__(optimizer, last_epoch)
    def get_lr(self) -> float:
        return [ max( base_lr * ( 1 - self.last_epoch/self.max_iters )**self.power, self.min_lr)
                for base_lr in self.base_lrs]
model = AlexNet(num_classes=2)
optimizer = torch.optim.Adam(model.parameters(),lr=0.1)
scheduler = PolyLR(optimizer, max_iters=150, power=0.9, last_epoch=-1, min_lr=1e-6)

使用方法和位置

参考链接:[1] https://blog.csdn.net/shengweiit/article/details/130649229

2\]

相关推荐
七月稻草人1 分钟前
CANN ops-nn:AIGC底层神经网络算力的核心优化引擎
人工智能·神经网络·aigc·cann
种时光的人1 分钟前
CANN仓库核心解读:ops-nn打造AIGC模型的神经网络算子核心支撑
人工智能·神经网络·aigc
晚霞的不甘3 分钟前
守护智能边界:CANN 的 AI 安全机制深度解析
人工智能·安全·语言模型·自然语言处理·前端框架
谢璞5 分钟前
中国AI最疯狂的一周:50亿金元肉搏,争夺未来的突围之战
人工智能
池央5 分钟前
CANN 算子生态的深度演进:稀疏计算支持与 PyPTO 范式的抽象层级
运维·人工智能·信号处理
方见华Richard6 分钟前
世毫九实验室(Shardy Lab)研究成果清单(2025版)
人工智能·经验分享·交互·原型模式·空间计算
Maynor9967 分钟前
OpenClaw 玩家必备:用 AI 自动追踪社区最新动态
java·服务器·人工智能
aini_lovee7 分钟前
MATLAB基于小波技术的图像融合实现
开发语言·人工智能·matlab
2501_941864968 分钟前
科学方法论破解学习时间堆砌误区
学习
ujainu16 分钟前
CANN仓库中的AIGC多模态统一抽象工程:昇腾AI软件栈如何用一套接口驾驭图文音视
人工智能·aigc