pytorch 自定义学习率更新 Poly

Poly

学习率调整策略需要继承_LRScheduler类,该类包含三个重要属性和两个重要方法

学习率与batch-size的关系

一般来说,batch-size的大小一般与学习率的大小成正比。batch-size越大一般意味着算法收敛方向的置信度越大,也可以选择较大的学习率来加快收敛速度。而小的batch-size规律性较差,需要小的学习率保证不出错。在显存允许的情况下,选择大的batch-size。

预设规则的学习率变化法:StepLR、Multi-StepLR

自适应的学习率变化法:ExponentialLR,CosineAnnealingLR,LambdaLR,OneCycleLR,Poly

Poly学习率调整策略的优点包括:

更好的泛化能力:Poly学习率调整策略可以在训练后期逐渐降低学习率,避免过拟合,提高模型的泛化能力。

对超参数不敏感:Poly学习率调整策略的性能不太受超参数的影响,相对比较稳定。

计算量较小:Poly学习率调整策略的计算量相对较小,不会影响训练速度。

Poly学习率调整策略的缺点包括:

收敛速度较慢:Poly学习率调整策略在训练初期学习率较低,收敛速度较慢。

不适用于所有模型:Poly学习率调整策略可能不适用于所有类型的模型,需要根据具体情况进行选择。

code 如下

python 复制代码
from torch.optim.lr_scheduler import _LRSchedule
from torch.optim.optimizer import Optimizer
// 定义
class PolyLR(_LRScheduler):
    def __init__(self,optimizer,max_iters,power=0.9,last_epoch=-1,min_lr=1e-6):
        # super(PolyLR,self).__init__(optimizer,last_epoch)
        self.power = power
        self.max_iters = max_iters
        self.min_lr = min_lr
        super(PolyLR, self).__init__(optimizer, last_epoch)
    def get_lr(self) -> float:
        return [ max( base_lr * ( 1 - self.last_epoch/self.max_iters )**self.power, self.min_lr)
                for base_lr in self.base_lrs]
model = AlexNet(num_classes=2)
optimizer = torch.optim.Adam(model.parameters(),lr=0.1)
scheduler = PolyLR(optimizer, max_iters=150, power=0.9, last_epoch=-1, min_lr=1e-6)

使用方法和位置

参考链接:[1] https://blog.csdn.net/shengweiit/article/details/130649229

[2] https://blog.csdn.net/qq_31580989/article/details/121491181

相关推荐
uncle_ll几秒前
PyTorch图像预处理:计算均值和方差以实现标准化
图像处理·人工智能·pytorch·均值算法·标准化
宋13810279720几秒前
Manus Xsens Metagloves虚拟现实手套
人工智能·机器人·vr·动作捕捉
SEVEN-YEARS4 分钟前
深入理解TensorFlow中的形状处理函数
人工智能·python·tensorflow
世优科技虚拟人8 分钟前
AI、VR与空间计算:教育和文旅领域的数字转型力量
人工智能·vr·空间计算
EterNity_TiMe_9 分钟前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
sanguine__13 分钟前
java学习-集合
学习
lxlyhwl13 分钟前
【STK学习】part2-星座-目标可见性与覆盖性分析
学习
nbsaas-boot14 分钟前
如何利用ChatGPT加速开发与学习:以BPMN编辑器为例
学习·chatgpt·编辑器
cloud studio AI应用14 分钟前
腾讯云 AI 代码助手:产品研发过程的思考和方法论
人工智能·云计算·腾讯云
禁默25 分钟前
第六届机器人、智能控制与人工智能国际学术会议(RICAI 2024)
人工智能·机器人·智能控制