pytorch 自定义学习率更新 Poly

Poly

学习率调整策略需要继承_LRScheduler类,该类包含三个重要属性和两个重要方法

学习率与batch-size的关系

一般来说,batch-size的大小一般与学习率的大小成正比。batch-size越大一般意味着算法收敛方向的置信度越大,也可以选择较大的学习率来加快收敛速度。而小的batch-size规律性较差,需要小的学习率保证不出错。在显存允许的情况下,选择大的batch-size。

预设规则的学习率变化法:StepLR、Multi-StepLR

自适应的学习率变化法:ExponentialLR,CosineAnnealingLR,LambdaLR,OneCycleLR,Poly

Poly学习率调整策略的优点包括:

更好的泛化能力:Poly学习率调整策略可以在训练后期逐渐降低学习率,避免过拟合,提高模型的泛化能力。

对超参数不敏感:Poly学习率调整策略的性能不太受超参数的影响,相对比较稳定。

计算量较小:Poly学习率调整策略的计算量相对较小,不会影响训练速度。

Poly学习率调整策略的缺点包括:

收敛速度较慢:Poly学习率调整策略在训练初期学习率较低,收敛速度较慢。

不适用于所有模型:Poly学习率调整策略可能不适用于所有类型的模型,需要根据具体情况进行选择。

code 如下

python 复制代码
from torch.optim.lr_scheduler import _LRSchedule
from torch.optim.optimizer import Optimizer
// 定义
class PolyLR(_LRScheduler):
    def __init__(self,optimizer,max_iters,power=0.9,last_epoch=-1,min_lr=1e-6):
        # super(PolyLR,self).__init__(optimizer,last_epoch)
        self.power = power
        self.max_iters = max_iters
        self.min_lr = min_lr
        super(PolyLR, self).__init__(optimizer, last_epoch)
    def get_lr(self) -> float:
        return [ max( base_lr * ( 1 - self.last_epoch/self.max_iters )**self.power, self.min_lr)
                for base_lr in self.base_lrs]
model = AlexNet(num_classes=2)
optimizer = torch.optim.Adam(model.parameters(),lr=0.1)
scheduler = PolyLR(optimizer, max_iters=150, power=0.9, last_epoch=-1, min_lr=1e-6)

使用方法和位置

参考链接:[1] https://blog.csdn.net/shengweiit/article/details/130649229

2\]

相关推荐
_Kayo_3 小时前
node.js 学习笔记3 HTTP
笔记·学习
Moshow郑锴5 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20255 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR6 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散136 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
CCCC13101637 小时前
嵌入式学习(day 28)线程
jvm·学习
mit6.8247 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945197 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
星星火柴9367 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
小狗爱吃黄桃罐头7 小时前
正点原子【第四期】Linux之驱动开发篇学习笔记-1.1 Linux驱动开发与裸机开发的区别
linux·驱动开发·学习