机器学习笔记:focal loss

1 介绍

  • Focal Loss 是一种在类别不平衡的情况下改善模型性能的损失函数

  • 最初在 2017 年的论文《Focal Loss for Dense Object Detection》中提出

  • 这种损失函数主要用于解决在有挑战性的对象检测任务中,易分类的负样本占据主导地位的问题,从而导致模型难以学习到难分类样本的特征

  • Focal Loss 修改了标准的交叉熵损失函数,通过减少易分类样本的相对损失来增加对难分类样本的关注

    • 其基本形式为如下FL的部分
  • γ 是调节因子,用于控制易分类样本对损失的贡献减小的速率。
  • 通过引入,Focal Loss 能够降低那些已经被正确分类的样本(pt 较高)的损失贡献,使得模型更加关注那些难以正确分类的样本。
相关推荐
咔叽布吉41 分钟前
【论文阅读笔记】CamoFormer: Masked Separable Attention for Camouflaged Object Detection
论文阅读·笔记·目标检测
johnny23342 分钟前
《大模型应用开发极简入门》笔记
笔记·chatgpt
亦枫Leonlew1 小时前
微积分复习笔记 Calculus Volume 1 - 4.7 Applied Optimization Problems
笔记·数学·微积分·1024程序员节
小肥象不是小飞象1 小时前
(六千字心得笔记)零基础C语言入门第八课——函数(上)
c语言·开发语言·笔记·1024程序员节
星LZX1 小时前
WireShark入门学习笔记
笔记·学习·wireshark
努力变厉害的小超超3 小时前
ArkTS中的组件基础、状态管理、样式处理、class语法以及界面渲染
笔记·鸿蒙
阡之尘埃7 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
aloha_7897 小时前
从零记录搭建一个干净的mybatis环境
java·笔记·spring·spring cloud·maven·mybatis·springboot
dsywws8 小时前
Linux学习笔记之vim入门
linux·笔记·学习
丕羽10 小时前
【Pytorch】基本语法
人工智能·pytorch·python