机器学习笔记:focal loss

1 介绍

  • Focal Loss 是一种在类别不平衡的情况下改善模型性能的损失函数

  • 最初在 2017 年的论文《Focal Loss for Dense Object Detection》中提出

  • 这种损失函数主要用于解决在有挑战性的对象检测任务中,易分类的负样本占据主导地位的问题,从而导致模型难以学习到难分类样本的特征

  • Focal Loss 修改了标准的交叉熵损失函数,通过减少易分类样本的相对损失来增加对难分类样本的关注

    • 其基本形式为如下FL的部分
  • γ 是调节因子,用于控制易分类样本对损失的贡献减小的速率。
  • 通过引入,Focal Loss 能够降低那些已经被正确分类的样本(pt 较高)的损失贡献,使得模型更加关注那些难以正确分类的样本。
相关推荐
Moshow郑锴2 小时前
机器学习相关算法:回溯算法 贪心算法 回归算法(线性回归) 算法超参数 多项式时间 朴素贝叶斯分类算法
算法·机器学习·回归
Tiger Z2 小时前
《动手学深度学习v2》学习笔记 | 1. 引言
pytorch·深度学习·ai编程
rannn_1112 小时前
【MySQL学习|黑马笔记|Day7】触发器和锁(全局锁、表级锁、行级锁、)
笔记·后端·学习·mysql
草莓熊Lotso3 小时前
《详解 C++ Date 类的设计与实现:从运算符重载到功能测试》
开发语言·c++·经验分享·笔记·其他
_Kayo_9 小时前
node.js 学习笔记3 HTTP
笔记·学习
星星火柴93612 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
Moshow郑锴14 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
C++、Java和Python的菜鸟15 小时前
第六章 统计初步
算法·机器学习·概率论
Cx330❀15 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
小幽余生不加糖15 小时前
电路方案分析(二十二)适用于音频应用的25-50W反激电源方案
人工智能·笔记·学习·音视频