机器学习笔记:focal loss

1 介绍

  • Focal Loss 是一种在类别不平衡的情况下改善模型性能的损失函数

  • 最初在 2017 年的论文《Focal Loss for Dense Object Detection》中提出

  • 这种损失函数主要用于解决在有挑战性的对象检测任务中,易分类的负样本占据主导地位的问题,从而导致模型难以学习到难分类样本的特征

  • Focal Loss 修改了标准的交叉熵损失函数,通过减少易分类样本的相对损失来增加对难分类样本的关注

    • 其基本形式为如下FL的部分
  • γ 是调节因子,用于控制易分类样本对损失的贡献减小的速率。
  • 通过引入,Focal Loss 能够降低那些已经被正确分类的样本(pt 较高)的损失贡献,使得模型更加关注那些难以正确分类的样本。
相关推荐
Wishell20152 小时前
Pytorch文件夹结构
pytorch
Aileen_0v02 小时前
【AI驱动的数据结构:包装类的艺术与科学】
linux·数据结构·人工智能·笔记·网络协议·tcp/ip·whisper
itwangyang5202 小时前
AIDD - 从机器学习到深度学习:蛋白质-配体对接评分函数的进展
人工智能·深度学习·机器学习
jerry2011082 小时前
机器学习常用术语
人工智能·机器学习
IT古董2 小时前
【机器学习】机器学习的基本分类-强化学习-Actor-Critic 方法
人工智能·机器学习·分类
終不似少年遊*3 小时前
美国加州房价数据分析01
人工智能·python·机器学习·数据挖掘·数据分析·回归算法
嘿嘻哈呀3 小时前
使用ID3算法根据信息增益构建决策树
决策树·机器学习·信息增益·id3算法
Rinai_R3 小时前
计算机组成原理的学习笔记(7)-- 存储器·其二 容量扩展/多模块存储系统/外存/Cache/虚拟存储器
笔记·物联网·学习
吃着火锅x唱着歌3 小时前
PHP7内核剖析 学习笔记 第四章 内存管理(1)
android·笔记·学习
ragnwang3 小时前
C++ Eigen常见的高级用法 [学习笔记]
c++·笔记·学习