机器学习笔记:focal loss

1 介绍

  • Focal Loss 是一种在类别不平衡的情况下改善模型性能的损失函数

  • 最初在 2017 年的论文《Focal Loss for Dense Object Detection》中提出

  • 这种损失函数主要用于解决在有挑战性的对象检测任务中,易分类的负样本占据主导地位的问题,从而导致模型难以学习到难分类样本的特征

  • Focal Loss 修改了标准的交叉熵损失函数,通过减少易分类样本的相对损失来增加对难分类样本的关注

    • 其基本形式为如下FL的部分
  • γ 是调节因子,用于控制易分类样本对损失的贡献减小的速率。
  • 通过引入,Focal Loss 能够降低那些已经被正确分类的样本(pt 较高)的损失贡献,使得模型更加关注那些难以正确分类的样本。
相关推荐
一点.点4 分钟前
AlphaDrive:通过强化学习和推理释放自动驾驶中 VLM 的力量
人工智能·机器学习·自动驾驶
m0_637146937 分钟前
计算机网络基础总结:TCP/IP 模型、TCP vs UDP、DNS 查询过程
笔记·tcp/ip·计算机网络
Lester_110124 分钟前
嵌入式学习笔记 - freeRTOS vTaskPlaceOnEventList()函数解析
笔记·学习
机器学习之心41 分钟前
机器学习用于算法交易(Matlab实现)
算法·机器学习·matlab
moxiaoran57532 小时前
uni-app学习笔记二十三--交互反馈showToast用法
笔记·学习·uni-app
Blossom.1188 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn9 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
郄堃Deep Traffic9 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿10 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天10 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票