概率论拾遗

条件期望的性质

1.看成f(Y)即可

条件期望仅限于形式化公式,用于解决多个随机变量存在时的期望问题求解,即

E(?)=E(E(?|Y))#直接应用此公式条件住一个随机变量,进行接下来的计算即可

定义随机变量之间的距离为,即均方距离

随机变量的逼近:

使用常数a逼近随机变量,EX为最佳逼近,最佳逼近的误差为Var(X)

Y是已有数据,寻找一个函数g,来让g(Y)逼近X

的解g(Y)=E(X|Y) 即最佳逼近函数即已知数据为条件下的条件期望

频率学派下的统计量(θ为确定参数):

该式为频率学派下的分解,θ为常数,为统计量(

Xi为采样的iid随机变量 无偏估计:统计量的期望=欲估计的真值

统计量估计Xi的均值,是无偏估计

统计量估计Xi的方差,也是无偏估计

比较不同的统计量时,在无偏估计的框架下,寻找方差最小的统计量

充分统计量:给定充分统计量后,随机向量(X1, X2, X3...Xn)的条件分布(将采样的iid样本拼成一个向量)与参数θ无关

找特定分布的充分统计量的方法:nayman分解--瞪眼法看P(X1=x1, X2=x2, ...Xn=xn)找出充分统计量

不同种类的分布都有自己的充分统计量,是个技术活....

充分统计量可以将数据中关于θ的信息全部包含进来,所以找它有啥用?答:保证blockwell方法中的θ'是个统计量,是样本的函数,而与待求参数θ无关(要不然就是耍流氓了,统计量里带θ还估计个p).

改进统计量的方式:rao-blockwell方法,可以降低MSE(前提要求原统计量是无偏的)利用充分统计量

新的统计量θ' 比原统计量好,因为方差降低(他俩都是无偏估计)

完备统计量的定义:T是一个统计量满足 若E(h(T))=0则一定h(T)=0 则称T完备

Lehman-Scheffe定理:假设T是完备且充分的统计量,若h(T)是无偏估计,则h(T)是MVUE估计

cramer-rao下界:计算下界是个技术活

fisher information中的f(x,θ)表示f(X1, X2, X3...,Xn, θ)即随机向量(X1, X2, ..., Xn)的概率密度,在E中xi再看成Xi,对其求期望,于是只剩下成了θ的函数

fisher信息的两种计算方法:

相关推荐
培风图南以星河揽胜2 天前
Java实习模拟面试|离散数学|概率论|金融英语|数据库实战|职业规划|期末冲刺|今日本科计科要闻速递:技术分享与学习指南
java·面试·概率论
雪不下4 天前
计算机中的数学:概率(3)
概率论
sensen_kiss5 天前
INT305 Machine Learning 机器学习 Pt.9 Probabilistic Models(概率模型)
人工智能·机器学习·概率论
AI大模型学徒6 天前
NLP基础(八)_马尔可夫模型
算法·机器学习·自然语言处理·nlp·概率论·马尔可夫模型
谅望者7 天前
数据分析笔记08:Python编程基础-数据类型与变量
数据库·笔记·python·数据分析·概率论
醒过来摸鱼9 天前
9.11 傅里叶变换家族介绍
线性代数·算法·概率论
ChoSeitaku11 天前
线代强化NO7|秩|矩阵的秩|向量组的秩|极大线性无关组|公式
线性代数·矩阵·概率论
Cathy Bryant11 天前
信息论(五):联合熵与条件熵
人工智能·笔记·机器学习·数学建模·概率论
谅望者11 天前
数据分析笔记03:概率分布理论
笔记·数据分析·概率论
醒过来摸鱼13 天前
多重组合问题与矩阵配额问题
线性代数·矩阵·概率论