支持向量机(SVM)中核函数的本质意义

本质上在做什么?

内积是距离度量,核函数相当于将低维空间的距离映射到高维空间的距离,并非对特征直接映射。
为什么要求核函数是对称且Gram矩阵是半正定?

核函数对应某一特征空间的内积,要求①核函数对称;②Gram矩阵半正定。

证明内积对应的Gram矩阵半正定:
α T K α = [ α 1 , α 2 , ⋯   , α n ] [ κ ( x 1 , x 1 ) κ ( x 1 , x 2 ) ⋯ κ ( x 1 , x n ) κ ( x 2 , x 1 ) κ ( x 2 , x 2 ) ⋯ κ ( x 1 , x n ) ⋮ ⋮ ⋱ ⋮ κ ( x n , x 1 ) κ ( x n , x 2 ) ⋯ κ ( x n , x n ) ] [ α 1 α 2 ⋮ α n ] = ∑ i = 1 n ∑ j = 1 n α i κ ( x i , x j ) α j = ∑ i = 1 n ∑ j = 1 n α i α j ⟨ ϕ ( x i ) , ϕ ( x j ) ⟩ = ⟨ ∑ i = 1 n α i ϕ ( x i ) , ∑ j = 1 n α j ϕ ( x j ) ⟩ = ∥ ∑ i = 1 n α i ϕ ( x i ) ∥ 2 2 ⩾ 0 \begin{aligned} {{ \bm \alpha}^{\rm T} {\bm K} { \bm \alpha}} &=\begin{bmatrix} {\alpha}_1, {\alpha}_2, \cdots, {\alpha}_n \end{bmatrix} \begin{bmatrix} \kappa \left( {\bm x}_1, {\bm x}_1 \right) &\kappa \left( {\bm x}_1, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_1, {\bm x}_n \right) \\ \kappa \left( {\bm x}_2, {\bm x}_1 \right) &\kappa \left( {\bm x}_2, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_1, {\bm x}_n \right) \\ \vdots &\vdots &\ddots &\vdots \\ \kappa \left( {\bm x}_n, {\bm x}_1 \right) &\kappa \left( {\bm x}_n, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_n, {\bm x}_n \right) \\ \end{bmatrix} \begin{bmatrix} {\alpha}_1 \\ {\alpha}2 \\ \vdots \\ {\alpha}n \\ \end{bmatrix} \\ &= \sum\limits{i=1}^{n} \sum\limits{j=1}^{n} {\alpha}_i \kappa \left( {\bm x}_i, {\bm x}j \right) {\alpha}j \\ &= \sum\limits{i=1}^{n} \sum\limits{j=1}^{n} {\alpha}_i {\alpha}_j \langle \phi \left( {\bm x}_i \right), \phi \left( {\bm x}j \right) \rangle\\ &= \langle \sum\limits{i=1}^{n} {\alpha}_i \phi \left( {\bm x}i \right), \sum\limits{j=1}^{n} {\alpha}_j \phi \left( {\bm x}j \right) \rangle \\ &= \lVert \sum\limits{i=1}^{n} {\alpha}_i \phi \left( {\bm x}_i \right) \rVert^2_2 \\ &\geqslant 0 \end{aligned} αTKα=[α1,α2,⋯,αn] κ(x1,x1)κ(x2,x1)⋮κ(xn,x1)κ(x1,x2)κ(x2,x2)⋮κ(xn,x2)⋯⋯⋱⋯κ(x1,xn)κ(x1,xn)⋮κ(xn,xn) α1α2⋮αn =i=1∑nj=1∑nαiκ(xi,xj)αj=i=1∑nj=1∑nαiαj⟨ϕ(xi),ϕ(xj)⟩=⟨i=1∑nαiϕ(xi),j=1∑nαjϕ(xj)⟩=∥i=1∑nαiϕ(xi)∥22⩾0

相关推荐
PAK向日葵5 小时前
【算法导论】PDD 0817笔试题题解
算法·面试
地平线开发者7 小时前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
地平线开发者7 小时前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
星星火柴9369 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
艾莉丝努力练剑9 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法
Moshow郑锴10 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
C++、Java和Python的菜鸟11 小时前
第六章 统计初步
算法·机器学习·概率论
Cx330❀11 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
散11211 小时前
01数据结构-Prim算法
数据结构·算法·图论
起个昵称吧11 小时前
线程相关编程、线程间通信、互斥锁
linux·算法