支持向量机(SVM)中核函数的本质意义

本质上在做什么?

内积是距离度量,核函数相当于将低维空间的距离映射到高维空间的距离,并非对特征直接映射。
为什么要求核函数是对称且Gram矩阵是半正定?

核函数对应某一特征空间的内积,要求①核函数对称;②Gram矩阵半正定。

证明内积对应的Gram矩阵半正定:
α T K α = [ α 1 , α 2 , ⋯   , α n ] [ κ ( x 1 , x 1 ) κ ( x 1 , x 2 ) ⋯ κ ( x 1 , x n ) κ ( x 2 , x 1 ) κ ( x 2 , x 2 ) ⋯ κ ( x 1 , x n ) ⋮ ⋮ ⋱ ⋮ κ ( x n , x 1 ) κ ( x n , x 2 ) ⋯ κ ( x n , x n ) ] [ α 1 α 2 ⋮ α n ] = ∑ i = 1 n ∑ j = 1 n α i κ ( x i , x j ) α j = ∑ i = 1 n ∑ j = 1 n α i α j ⟨ ϕ ( x i ) , ϕ ( x j ) ⟩ = ⟨ ∑ i = 1 n α i ϕ ( x i ) , ∑ j = 1 n α j ϕ ( x j ) ⟩ = ∥ ∑ i = 1 n α i ϕ ( x i ) ∥ 2 2 ⩾ 0 \begin{aligned} {{ \bm \alpha}^{\rm T} {\bm K} { \bm \alpha}} &=\begin{bmatrix} {\alpha}_1, {\alpha}_2, \cdots, {\alpha}_n \end{bmatrix} \begin{bmatrix} \kappa \left( {\bm x}_1, {\bm x}_1 \right) &\kappa \left( {\bm x}_1, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_1, {\bm x}_n \right) \\ \kappa \left( {\bm x}_2, {\bm x}_1 \right) &\kappa \left( {\bm x}_2, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_1, {\bm x}_n \right) \\ \vdots &\vdots &\ddots &\vdots \\ \kappa \left( {\bm x}_n, {\bm x}_1 \right) &\kappa \left( {\bm x}_n, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_n, {\bm x}_n \right) \\ \end{bmatrix} \begin{bmatrix} {\alpha}_1 \\ {\alpha}2 \\ \vdots \\ {\alpha}n \\ \end{bmatrix} \\ &= \sum\limits{i=1}^{n} \sum\limits{j=1}^{n} {\alpha}_i \kappa \left( {\bm x}_i, {\bm x}j \right) {\alpha}j \\ &= \sum\limits{i=1}^{n} \sum\limits{j=1}^{n} {\alpha}_i {\alpha}_j \langle \phi \left( {\bm x}_i \right), \phi \left( {\bm x}j \right) \rangle\\ &= \langle \sum\limits{i=1}^{n} {\alpha}_i \phi \left( {\bm x}i \right), \sum\limits{j=1}^{n} {\alpha}_j \phi \left( {\bm x}j \right) \rangle \\ &= \lVert \sum\limits{i=1}^{n} {\alpha}_i \phi \left( {\bm x}_i \right) \rVert^2_2 \\ &\geqslant 0 \end{aligned} αTKα=[α1,α2,⋯,αn] κ(x1,x1)κ(x2,x1)⋮κ(xn,x1)κ(x1,x2)κ(x2,x2)⋮κ(xn,x2)⋯⋯⋱⋯κ(x1,xn)κ(x1,xn)⋮κ(xn,xn) α1α2⋮αn =i=1∑nj=1∑nαiκ(xi,xj)αj=i=1∑nj=1∑nαiαj⟨ϕ(xi),ϕ(xj)⟩=⟨i=1∑nαiϕ(xi),j=1∑nαjϕ(xj)⟩=∥i=1∑nαiϕ(xi)∥22⩾0

相关推荐
xxxxxxllllllshi14 分钟前
【LeetCode Hot100----14-贪心算法(01-05),包含多种方法,详细思路与代码,让你一篇文章看懂所有!】
java·数据结构·算法·leetcode·贪心算法
前端小L17 分钟前
图论专题(二十二):并查集的“逻辑审判”——判断「等式方程的可满足性」
算法·矩阵·深度优先·图论·宽度优先
铁手飞鹰23 分钟前
二叉树(C语言,手撕)
c语言·数据结构·算法·二叉树·深度优先·广度优先
@sinner1 小时前
你好,Scikit-learn:从零开始你的第一个机器学习项目
python·机器学习·scikit-learn
专业抄代码选手2 小时前
【Leetcode】1930. 长度为 3 的不同回文子序列
javascript·算法·面试
Jay20021112 小时前
【机器学习】7-9 分类任务 & 逻辑回归的成本函数 & 逻辑回归的梯度下降
笔记·机器学习·分类
[J] 一坚2 小时前
深入浅出理解冒泡、插入排序和归并、快速排序递归调用过程
c语言·数据结构·算法·排序算法
czlczl200209252 小时前
算法:二叉搜索树的最近公共祖先
算法
司铭鸿2 小时前
祖先关系的数学重构:从家谱到算法的思维跃迁
开发语言·数据结构·人工智能·算法·重构·c#·哈希算法
SoleMotive.3 小时前
redis实现漏桶算法--https://blog.csdn.net/m0_74908430/article/details/155076710
redis·算法·junit