支持向量机(SVM)中核函数的本质意义

本质上在做什么?

内积是距离度量,核函数相当于将低维空间的距离映射到高维空间的距离,并非对特征直接映射。
为什么要求核函数是对称且Gram矩阵是半正定?

核函数对应某一特征空间的内积,要求①核函数对称;②Gram矩阵半正定。

证明内积对应的Gram矩阵半正定:
α T K α = [ α 1 , α 2 , ⋯   , α n ] [ κ ( x 1 , x 1 ) κ ( x 1 , x 2 ) ⋯ κ ( x 1 , x n ) κ ( x 2 , x 1 ) κ ( x 2 , x 2 ) ⋯ κ ( x 1 , x n ) ⋮ ⋮ ⋱ ⋮ κ ( x n , x 1 ) κ ( x n , x 2 ) ⋯ κ ( x n , x n ) ] [ α 1 α 2 ⋮ α n ] = ∑ i = 1 n ∑ j = 1 n α i κ ( x i , x j ) α j = ∑ i = 1 n ∑ j = 1 n α i α j ⟨ ϕ ( x i ) , ϕ ( x j ) ⟩ = ⟨ ∑ i = 1 n α i ϕ ( x i ) , ∑ j = 1 n α j ϕ ( x j ) ⟩ = ∥ ∑ i = 1 n α i ϕ ( x i ) ∥ 2 2 ⩾ 0 \begin{aligned} {{ \bm \alpha}^{\rm T} {\bm K} { \bm \alpha}} &=\begin{bmatrix} {\alpha}_1, {\alpha}_2, \cdots, {\alpha}_n \end{bmatrix} \begin{bmatrix} \kappa \left( {\bm x}_1, {\bm x}_1 \right) &\kappa \left( {\bm x}_1, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_1, {\bm x}_n \right) \\ \kappa \left( {\bm x}_2, {\bm x}_1 \right) &\kappa \left( {\bm x}_2, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_1, {\bm x}_n \right) \\ \vdots &\vdots &\ddots &\vdots \\ \kappa \left( {\bm x}_n, {\bm x}_1 \right) &\kappa \left( {\bm x}_n, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_n, {\bm x}_n \right) \\ \end{bmatrix} \begin{bmatrix} {\alpha}_1 \\ {\alpha}2 \\ \vdots \\ {\alpha}n \\ \end{bmatrix} \\ &= \sum\limits{i=1}^{n} \sum\limits{j=1}^{n} {\alpha}_i \kappa \left( {\bm x}_i, {\bm x}j \right) {\alpha}j \\ &= \sum\limits{i=1}^{n} \sum\limits{j=1}^{n} {\alpha}_i {\alpha}_j \langle \phi \left( {\bm x}_i \right), \phi \left( {\bm x}j \right) \rangle\\ &= \langle \sum\limits{i=1}^{n} {\alpha}_i \phi \left( {\bm x}i \right), \sum\limits{j=1}^{n} {\alpha}_j \phi \left( {\bm x}j \right) \rangle \\ &= \lVert \sum\limits{i=1}^{n} {\alpha}_i \phi \left( {\bm x}_i \right) \rVert^2_2 \\ &\geqslant 0 \end{aligned} αTKα=[α1,α2,⋯,αn] κ(x1,x1)κ(x2,x1)⋮κ(xn,x1)κ(x1,x2)κ(x2,x2)⋮κ(xn,x2)⋯⋯⋱⋯κ(x1,xn)κ(x1,xn)⋮κ(xn,xn) α1α2⋮αn =i=1∑nj=1∑nαiκ(xi,xj)αj=i=1∑nj=1∑nαiαj⟨ϕ(xi),ϕ(xj)⟩=⟨i=1∑nαiϕ(xi),j=1∑nαjϕ(xj)⟩=∥i=1∑nαiϕ(xi)∥22⩾0

相关推荐
mit6.8244 小时前
Xai架构
算法
民乐团扒谱机5 小时前
【读论文】深度学习中的卷积算术指南 A guide to convolution arithmetic for deep learning
人工智能·深度学习·神经网络·机器学习·cnn·卷积神经网络·图像识别
WBluuue5 小时前
Codeforces 1078 Div2(ABCDEF1)
c++·算法
寻星探路5 小时前
【JVM 终极通关指南】万字长文从底层到实战全维度深度拆解 Java 虚拟机
java·开发语言·jvm·人工智能·python·算法·ai
田里的水稻5 小时前
FA_融合和滤波(FF)-联邦滤波(FKF)
人工智能·算法·数学建模·机器人·自动驾驶
紫陌涵光6 小时前
112. 路径总和
java·前端·算法
回敲代码的猴子6 小时前
2月8日上机
开发语言·c++·算法
caoz6 小时前
AI的春节档
大数据·人工智能·深度学习·机器学习·计算机视觉
硅谷秋水6 小时前
用于机器人控制的因果世界建模
深度学习·机器学习·计算机视觉·语言模型·机器人
IT猿手7 小时前
MOEA/D(基于分解的多目标进化算法)求解46个多目标函数及一个工程应用,包含四种评价指标,MATLAB代码
开发语言·算法·matlab·多目标算法