leetcode 动态规划(基础版) 使用最小花费爬楼梯

题目:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

题解:

本题开始真正使用动态规划的知识了,本人也是初次入门,只是即兴写下所学所感,在这过程中可能有出错的地方,欢迎大家一起讨论。

每一次爬楼梯不再像之前爬楼梯那样单纯递推就可求出,而是要在递推的基础上满足整体最优解。

每一次的更新策略是走到本层楼梯应该是从上一步和上两步中花费最少的走上来的。即:

dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);

cpp 复制代码
int minCostClimbingStairs(vector<int>& cost) {
        vector<int>dp(cost.size()+1,0);
        for(int i=2;i<=cost.size();i++){
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[cost.size()];
    }

写出这道题后让我心里对动态规划和贪心做了个对比,目前得出的结论是:

贪心:在实现每一层时,按一个策略从多个选法中选择最优的,通过局部最优达到整体最优。

动态规划:先把到本层的所有策略都做一遍,然后再从中选择最优的,通过小整体最优得到大整体最优解。

相关推荐
C雨后彩虹4 小时前
任务最优调度
java·数据结构·算法·华为·面试
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
Niuguangshuo7 小时前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
a3158238067 小时前
Android 大图显示策略优化显示(一)
android·算法·图片加载·大图片
一条大祥脚7 小时前
26.1.9 轮廓线dp 状压最短路 构造
数据结构·c++·算法
鲨莎分不晴7 小时前
反向传播的数学本质:链式法则与动态规划的完美共舞
算法·动态规划
sonadorje8 小时前
逻辑回归中的条件概率
算法·机器学习·逻辑回归
cici158748 小时前
基于Pan-Tompkins算法的ECG信号HRV提取方案
算法
McGrady-1758 小时前
拓扑导航 vs 几何导航的具体实现位置
算法