神经网络学习3-卷积层

膨胀卷积,也被称为空洞卷积或扩张卷积,是一种特殊的卷积运算,它在标准卷积的基础上引入了一个额外的超参数,即膨胀率(dilation rate)。这个超参数决定了在卷积核的元素之间插入多少额外的空间。通过这种方式,膨胀卷积能够在不增加计算复杂度的同时,扩大卷积运算的采样范围,从而增加感受野(receptive field)的大小。感受野指的是卷积神经网络中某一层输出结果中一个元素所对应的输入层的区域大小,它代表了卷积核在图像上看到的区域大小。感受野越大,包含的上下文关系越多,有利于捕捉更广泛的图像信息。

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
print(yizhou)

输出的是init中定义的卷积

Yizhou(

(conv1): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))

)

卷积后的结果是H-kernel_size +1,W也是

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
for data in dataloader:
    imgs,targets=data
    output=yizhou(imgs)
    print(imgs.shape)
    print(output.shape)

如图所示可得输出3通道转为了6通道

大小变为了30x30

一个错误:

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
step=0
writer=SummaryWriter('../logs')
for data in dataloader:
    imgs,targets=data
    output=yizhou(imgs)
    print(imgs.shape)
    print(output.shape)
    writer.add_images('input',imgs,step)
    writer.add_images('output',output,step)

    step=step+1

这里出现了报错

因为add_images方法一般只接受三通道CHW或者1通道的

因此要用reshape方法进行调整

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
step=0
writer=SummaryWriter('logs')#../是父文件夹
for data in dataloader:
    imgs,targets=data
    output=yizhou(imgs)
    print(imgs.shape)
    print(output.shape)
    writer.add_images('input',imgs,step)
    output=torch.reshape(output,(-1,3,30,30))#这里的-1指的是占位,让torch自行计算batchsize
    writer.add_images('output',output,step)#SummaryWriter 的 add_images 方法希望输入张量有1个或3个通道
    #因为这里输出的是6通道,我们需要将6通道转为3通道,多余的放在batchsize里面

    step=step+1
writer.close()


卷积层:多少个卷积核就输出多少层

相关推荐
佚明zj1 小时前
全卷积和全连接
人工智能·深度学习
并不会2 小时前
常见 CSS 选择器用法
前端·css·学习·html·前端开发·css选择器
龙鸣丿2 小时前
Linux基础学习笔记
linux·笔记·学习
Nu11PointerException4 小时前
JAVA笔记 | ResponseBodyEmitter等异步流式接口快速学习
笔记·学习
阿_旭5 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^5 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246666 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
YRr YRr6 小时前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_20246 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
红客5977 小时前
Transformer和BERT的区别
深度学习·bert·transformer