神经网络学习3-卷积层

膨胀卷积,也被称为空洞卷积或扩张卷积,是一种特殊的卷积运算,它在标准卷积的基础上引入了一个额外的超参数,即膨胀率(dilation rate)。这个超参数决定了在卷积核的元素之间插入多少额外的空间。通过这种方式,膨胀卷积能够在不增加计算复杂度的同时,扩大卷积运算的采样范围,从而增加感受野(receptive field)的大小。感受野指的是卷积神经网络中某一层输出结果中一个元素所对应的输入层的区域大小,它代表了卷积核在图像上看到的区域大小。感受野越大,包含的上下文关系越多,有利于捕捉更广泛的图像信息。

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
print(yizhou)

输出的是init中定义的卷积

Yizhou(

(conv1): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))

)

卷积后的结果是H-kernel_size +1,W也是

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
for data in dataloader:
    imgs,targets=data
    output=yizhou(imgs)
    print(imgs.shape)
    print(output.shape)

如图所示可得输出3通道转为了6通道

大小变为了30x30

一个错误:

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
step=0
writer=SummaryWriter('../logs')
for data in dataloader:
    imgs,targets=data
    output=yizhou(imgs)
    print(imgs.shape)
    print(output.shape)
    writer.add_images('input',imgs,step)
    writer.add_images('output',output,step)

    step=step+1

这里出现了报错

因为add_images方法一般只接受三通道CHW或者1通道的

因此要用reshape方法进行调整

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
step=0
writer=SummaryWriter('logs')#../是父文件夹
for data in dataloader:
    imgs,targets=data
    output=yizhou(imgs)
    print(imgs.shape)
    print(output.shape)
    writer.add_images('input',imgs,step)
    output=torch.reshape(output,(-1,3,30,30))#这里的-1指的是占位,让torch自行计算batchsize
    writer.add_images('output',output,step)#SummaryWriter 的 add_images 方法希望输入张量有1个或3个通道
    #因为这里输出的是6通道,我们需要将6通道转为3通道,多余的放在batchsize里面

    step=step+1
writer.close()


卷积层:多少个卷积核就输出多少层

相关推荐
那雨倾城32 分钟前
YOLO + MediaPipe 在PiscCode上解决多脸 Landmark 中「人脸数量固定」的问题
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
weixin_462446231 小时前
【实践原创】 dify创建获取天气的Agent
学习·dify
智驱力人工智能1 小时前
从合规到习惯 海上作业未穿救生衣AI识别系统的工程实践与体系价值 未穿救生衣检测 AI救生衣状态识别 边缘计算救生衣监测设备
人工智能·深度学习·opencv·算法·目标检测·边缘计算
我爱C编程1 小时前
【1.22】基于FPGA的Costas环开发课程学习总结
学习·fpga开发·costas环
全栈陈序员1 小时前
Vue 实例挂载的过程是怎样的?
前端·javascript·vue.js·学习·前端框架
tangjunjun-owen1 小时前
DINOv3 demo
python·深度学习·机器学习
小林有点嵌1 小时前
UML之时序图学习
学习·uml
行业探路者1 小时前
如何利用活码生成产品画册二维码?
学习·音视频·语音识别·二维码·设备巡检
好奇龙猫2 小时前
人工智能学习-AI-MIT公开课-第三节:推理:目标树与基于规则的专家系统-笔记
人工智能·笔记·学习
正经人_x2 小时前
学习日记28:Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks
人工智能·深度学习·cnn