神经网络学习3-卷积层

膨胀卷积,也被称为空洞卷积或扩张卷积,是一种特殊的卷积运算,它在标准卷积的基础上引入了一个额外的超参数,即膨胀率(dilation rate)。这个超参数决定了在卷积核的元素之间插入多少额外的空间。通过这种方式,膨胀卷积能够在不增加计算复杂度的同时,扩大卷积运算的采样范围,从而增加感受野(receptive field)的大小。感受野指的是卷积神经网络中某一层输出结果中一个元素所对应的输入层的区域大小,它代表了卷积核在图像上看到的区域大小。感受野越大,包含的上下文关系越多,有利于捕捉更广泛的图像信息。

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
print(yizhou)

输出的是init中定义的卷积

Yizhou(

(conv1): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))

)

卷积后的结果是H-kernel_size +1,W也是

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
for data in dataloader:
    imgs,targets=data
    output=yizhou(imgs)
    print(imgs.shape)
    print(output.shape)

如图所示可得输出3通道转为了6通道

大小变为了30x30

一个错误:

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
step=0
writer=SummaryWriter('../logs')
for data in dataloader:
    imgs,targets=data
    output=yizhou(imgs)
    print(imgs.shape)
    print(output.shape)
    writer.add_images('input',imgs,step)
    writer.add_images('output',output,step)

    step=step+1

这里出现了报错

因为add_images方法一般只接受三通道CHW或者1通道的

因此要用reshape方法进行调整

c 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Yizhou(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)#卷积层

    def forward(self,x):
        x=self.conv1(x)
        return x

yizhou=Yizhou()
step=0
writer=SummaryWriter('logs')#../是父文件夹
for data in dataloader:
    imgs,targets=data
    output=yizhou(imgs)
    print(imgs.shape)
    print(output.shape)
    writer.add_images('input',imgs,step)
    output=torch.reshape(output,(-1,3,30,30))#这里的-1指的是占位,让torch自行计算batchsize
    writer.add_images('output',output,step)#SummaryWriter 的 add_images 方法希望输入张量有1个或3个通道
    #因为这里输出的是6通道,我们需要将6通道转为3通道,多余的放在batchsize里面

    step=step+1
writer.close()


卷积层:多少个卷积核就输出多少层

相关推荐
Zack_Liu28 分钟前
深度学习基础模块
人工智能·深度学习
武文斌771 小时前
复习总结最终版:单片机
linux·单片机·嵌入式硬件·学习
闲看云起1 小时前
Bert:从“读不懂上下文”的AI,到真正理解语言
论文阅读·人工智能·深度学习·语言模型·自然语言处理·bert
sealaugh322 小时前
AI(学习笔记第十二课) 使用langsmith的agents
人工智能·笔记·学习
信息快讯3 小时前
【机器学习赋能的智能光子学器件系统研究与应用】
人工智能·神经网络·机器学习·光学
QZ_orz_freedom3 小时前
学习笔记--事务管理
笔记·学习
im_AMBER3 小时前
Web 开发 30
前端·笔记·后端·学习·web
试试勇气4 小时前
Linux学习笔记(八)--环境变量与进程地址空间
linux·笔记·学习
蒙奇D索大4 小时前
【数据结构】考研数据结构核心考点:平衡二叉树(AVL树)详解——平衡因子与4大旋转操作入门指南
数据结构·笔记·学习·考研·改行学it
IT小哥哥呀4 小时前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类