基于改进贝叶斯学习的旋转机械故障诊断(MATLAB)

贝叶斯理论的基础是18世纪的英国数学家Bayes提出的贝叶斯公式,Bayes在统计决策函数、统计推断以及和统计的估算等数学领域都做出了重要贡献。19世纪,法国数学家Laplace创作的《概率的分析理论》一文利用了贝叶斯分析,但由于当时贝叶斯理论在实际应用中存在各种问题,因而未曾被大家普遍接受。20世纪初,意大利数学家Fineti和英国数学家Jeffreys都对贝叶斯理论的创新与完善做出了重要贡献。1950年,统计学家Wald提出了统计决策理论,利用贝叶斯方法将数理统计问题看作统计学家与自然的博弈,这在数理统计学上是一项重大革新。与此同时,信息论也得到长足发展,这些新变化直接或间接地推动了贝叶斯理论的完善。20世纪50年代,Robbins等人为代表的数学家提出将经验经典方法和贝叶斯方法相结合的思路,引起了统计界的广泛关注。1958年,著名的统计学杂志《Biometrika》为了纪念贝叶斯,全文重新刊登了论文《论有关基于问题的求解》,标志着贝叶斯方法重新进入大众视野。20世纪60年代以后,随着科学技术的发展,特别是人工智能领域的快速进步,贝叶斯理论在机器学习、数据挖掘等方面获得了广阔的应用空间。

鉴于此,采用一种改进的贝叶斯学习方法对旋转机械进行故障诊断,并以异步电机转子断条故障为例进行了试验验证,运行环境为MATLAB R2018。

​​​​​​​擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

相关推荐
歌_顿15 分钟前
Embedding 模型word2vec/glove/fasttext/elmo/doc2vec/infersent学习总结
人工智能·算法
胡萝卜3.016 分钟前
深入C++可调用对象:从function包装到bind参数适配的技术实现
开发语言·c++·人工智能·机器学习·bind·function·包装器
Echo_NGC223717 分钟前
【KL 散度】深入理解 Kullback-Leibler Divergence:AI 如何衡量“像不像”的问题
人工智能·算法·机器学习·散度·kl
愤怒的可乐19 分钟前
从零构建大模型智能体:OpenAI Function Calling智能体实战
人工智能·大模型·智能体
XiaoMu_00129 分钟前
基于深度学习的农作物叶片病害智能识别与防治系统
人工智能·深度学习
potato_155439 分钟前
Windows11系统安装Isaac Sim和Isaac Lab记录
人工智能·学习·isaac sim·isaac lab
测试人社区-千羽1 小时前
48小时攻克测试岗——闪电面试极速备战手册
人工智能·python·opencv·面试·职场和发展·单元测试·压力测试
独自归家的兔1 小时前
大模型通义千问3-VL-Plus - 视觉推理(在线视频)
人工智能·计算机视觉
qq_160144871 小时前
2025年AI工程师认证报考指南:上海站最新流程
人工智能
Coding茶水间1 小时前
基于深度学习的脑肿瘤检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉