STM32通过I2C硬件读写MPU6050

文章目录

[1. MPU6050](#1. MPU6050)

[2. 代码实现](#2. 代码实现)

[2.1 程序整体构架](#2.1 程序整体构架)

[2.2 MPU6050.C](#2.2 MPU6050.C)

[2.3 MPU6050.H](#2.3 MPU6050.H)

[2.4 MPU6050_Reg.h](#2.4 MPU6050_Reg.h)

[2.5 main.c](#2.5 main.c)


1. MPU6050

对于I2C通信和MPU6050的详细解析可以看下面这篇文章

STM32单片机I2C通信详解-CSDN博客

对于STM32通过I2C软件读写MPU6050的代码,可以看下面这篇文章

相关配置的说明和解析都在软件实现也在这篇文章里:

STM32通过I2C软件读写MPU6050-CSDN博客

MPU6050是一个6轴姿态传感器,可以测量芯片自身X、Y、Z轴的加速度、角速度参数,通过数据融合,可进一步得到姿态角,常应用于平衡车、飞行器等需要检测自身姿态的场景。

3轴加速度计(Accelerometer):测量X、Y、Z轴的加速度

3轴陀螺仪传感器(Gyroscope):测量X、Y、Z轴的角速度

欧拉角

  • 欧拉角是用来描述三维空间中刚体旋转的三个角度:俯仰角(Pitch)、滚转角(Roll)和偏航角(Yaw)。
  • 俯仰角(Pitch):飞机机头上下倾斜的角度。
  • 滚转角(Roll):飞机左右倾斜的角度。
  • 偏航角(Yaw):飞机左右转向的角度。

软件和硬件波形对比

软件I2C实现

  1. 波形特点:软件I2C的波形较为不规整,每个时钟周期和空闲时间都不一致。
  2. 操作特点:软件I2C时的引脚操作会有一定的延时,因此各个时钟周期的间隔和占空比都不均匀。

硬件I2C实现

  1. 波形特点:硬件I2C的波形更加规整,时钟周期和占空比非常一致。
  2. 操作特点:每个时钟周期后都有严格的延时,保证每个周期的时间相同。

传感器模型

这里借用一张图片

  • 陀螺仪旋转检测

    • 陀螺仪绕Z轴旋转,陀螺仪Z轴会输出对应的角速度。
    • 图示中,三维空间的坐标轴X、Y、Z对应陀螺仪的三个方向。
    • 通过陀螺仪的测量,可以获得绕某一轴的旋转角速度信息,帮助理解物体的旋转状态。
  • 加速度计检测

    • 在正方体中放置一个小球,小球压在哪个面上就产生对应轴的输出。
    • 当前芯片水平放置,对应正方体的X轴、Y轴数据基本为0。
    • 小球在底面上,产生1个g的重力加速度,这里显示的数据是1943。
    • 1943代表Z轴方向的支持力,所以Z轴加速度为正。
  • 数据计算

    • 根据测量值1943和满量程32768(16位ADC),计算得出加速度的实际值。
    • 根据测量值1943和满量程32768(16位ADC),计算得出加速度的实际值。
    • 公式: 1943/32768 = Z/16g
    • 所以Z轴的加速度为0.95g。
  • 测量值比例公式

    • 读到的ADC值与满量程值之间的比例关系。
    • 公式: 读到的数据/32768 = X/满量程 (其中,满量程在16位系统中为-32768到32767)

2. 代码实现

硬件I2C读写MPU6050

2.1 程序整体构架

  • Main.c
    • 调用MPU6050初始化函数。
    • 循环读取数据并进行显示。
  • MPU6050.c
    • 基于I2C通信协议,设定设备地址,发送读写指令。
    • 配置I2C外设,对I2C外设进行初始化
    • 配置寄存器,读取传感器数据。

2.2 MPU6050.C

复制代码
#include "stm32f10x.h"                  // Device header
#include "MPU6050_Reg.h"

#define MPU6050_ADDRESS		0xD0		//MPU6050的I2C从机地址

/**
  * 函    数:MPU6050等待事件
  * 参    数:同I2C_CheckEvent
  */
void MPU6050_WaitEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT)
{
	uint32_t Timeout;
	Timeout = 10000;									//给定超时计数时间
	while (I2C_CheckEvent(I2Cx, I2C_EVENT) != SUCCESS)	//循环等待指定事件
	{
		Timeout --;										//等待时,计数值自减
		if (Timeout == 0)								//自减到0后,等待超时
		{
			/*超时的错误处理代码,可以添加到此处*/
			break;										//跳出等待,不等了
		}
	}
}

/**
  * 函    数:MPU6050写寄存器
  * 参    数:RegAddress 寄存器地址,范围:参考MPU6050手册的寄存器描述
  * 参    数:Data 要写入寄存器的数据,范围:0x00~0xFF
  */
void MPU6050_WriteReg(uint8_t RegAddress, uint8_t Data)
{
	I2C_GenerateSTART(I2C2, ENABLE);										//硬件I2C生成起始条件
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_MODE_SELECT);					//等待EV5
	
	I2C_Send7bitAddress(I2C2, MPU6050_ADDRESS, I2C_Direction_Transmitter);	//硬件I2C发送从机地址,方向为发送
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED);	//等待EV6
	
	I2C_SendData(I2C2, RegAddress);											//硬件I2C发送寄存器地址
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_TRANSMITTING);			//等待EV8
	
	I2C_SendData(I2C2, Data);												//硬件I2C发送数据
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_TRANSMITTED);				//等待EV8_2
	
	I2C_GenerateSTOP(I2C2, ENABLE);											//硬件I2C生成终止条件
}

/**
  * 函    数:MPU6050读寄存器
  * 参    数:RegAddress 寄存器地址,范围:参考MPU6050手册的寄存器描述
  * 返 回 值:读取寄存器的数据,范围:0x00~0xFF
  */
uint8_t MPU6050_ReadReg(uint8_t RegAddress)
{
	uint8_t Data;
	
	I2C_GenerateSTART(I2C2, ENABLE);										//硬件I2C生成起始条件
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_MODE_SELECT);					//等待EV5
	
	I2C_Send7bitAddress(I2C2, MPU6050_ADDRESS, I2C_Direction_Transmitter);	//硬件I2C发送从机地址,方向为发送
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED);	//等待EV6
	
	I2C_SendData(I2C2, RegAddress);											//硬件I2C发送寄存器地址
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_TRANSMITTED);				//等待EV8_2
	
	I2C_GenerateSTART(I2C2, ENABLE);										//硬件I2C生成重复起始条件
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_MODE_SELECT);					//等待EV5
	
	I2C_Send7bitAddress(I2C2, MPU6050_ADDRESS, I2C_Direction_Receiver);		//硬件I2C发送从机地址,方向为接收
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED);		//等待EV6
	
	I2C_AcknowledgeConfig(I2C2, DISABLE);									//在接收最后一个字节之前提前将应答失能
	I2C_GenerateSTOP(I2C2, ENABLE);											//在接收最后一个字节之前提前申请停止条件
	
	MPU6050_WaitEvent(I2C2, I2C_EVENT_MASTER_BYTE_RECEIVED);				//等待EV7
	Data = I2C_ReceiveData(I2C2);											//接收数据寄存器
	
	I2C_AcknowledgeConfig(I2C2, ENABLE);									//将应答恢复为使能,为了不影响后续可能产生的读取多字节操作
	
	return Data;
}

/**
  * 函    数:MPU6050初始化
  * 参    数:无
  * 返 回 值:无
  */
void MPU6050_Init(void)
{
	/*开启时钟*/
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2, ENABLE);		//开启I2C2的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);		//开启GPIOB的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_OD;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);					//将PB10和PB11引脚初始化为复用开漏输出
	
	/*I2C初始化*/
	I2C_InitTypeDef I2C_InitStructure;						//定义结构体变量
	I2C_InitStructure.I2C_Mode = I2C_Mode_I2C;				//模式,选择为I2C模式
	I2C_InitStructure.I2C_ClockSpeed = 50000;				//时钟速度,选择为50KHz
	I2C_InitStructure.I2C_DutyCycle = I2C_DutyCycle_2;		//时钟占空比,选择Tlow/Thigh = 2
	I2C_InitStructure.I2C_Ack = I2C_Ack_Enable;				//应答,选择使能
	I2C_InitStructure.I2C_AcknowledgedAddress = I2C_AcknowledgedAddress_7bit;	//应答地址,选择7位,从机模式下才有效
	I2C_InitStructure.I2C_OwnAddress1 = 0x00;				//自身地址,从机模式下才有效
	I2C_Init(I2C2, &I2C_InitStructure);						//将结构体变量交给I2C_Init,配置I2C2
	
	/*I2C使能*/
	I2C_Cmd(I2C2, ENABLE);									//使能I2C2,开始运行
	
	/*MPU6050寄存器初始化,需要对照MPU6050手册的寄存器描述配置,此处仅配置了部分重要的寄存器*/
	MPU6050_WriteReg(MPU6050_PWR_MGMT_1, 0x01);				//电源管理寄存器1,取消睡眠模式,选择时钟源为X轴陀螺仪
	MPU6050_WriteReg(MPU6050_PWR_MGMT_2, 0x00);				//电源管理寄存器2,保持默认值0,所有轴均不待机
	MPU6050_WriteReg(MPU6050_SMPLRT_DIV, 0x09);				//采样率分频寄存器,配置采样率
	MPU6050_WriteReg(MPU6050_CONFIG, 0x06);					//配置寄存器,配置DLPF
	MPU6050_WriteReg(MPU6050_GYRO_CONFIG, 0x18);			//陀螺仪配置寄存器,选择满量程为±2000°/s
	MPU6050_WriteReg(MPU6050_ACCEL_CONFIG, 0x18);			//加速度计配置寄存器,选择满量程为±16g
}


/**
  * 函    数:MPU6050获取ID号
  * 参    数:无
  * 返 回 值:MPU6050的ID号
  */
uint8_t MPU6050_GetID(void)
{
	return MPU6050_ReadReg(MPU6050_WHO_AM_I);		//返回WHO_AM_I寄存器的值
}

/**
  * 函    数:MPU6050获取数据
  * 参    数:AccX AccY AccZ 加速度计X、Y、Z轴的数据,使用输出参数的形式返回,范围:-32768~32767
  * 参    数:GyroX GyroY GyroZ 陀螺仪X、Y、Z轴的数据,使用输出参数的形式返回,范围:-32768~32767
  * 返 回 值:无
  */
void MPU6050_GetData(int16_t *AccX, int16_t *AccY, int16_t *AccZ, 
						int16_t *GyroX, int16_t *GyroY, int16_t *GyroZ)
{
	uint8_t DataH, DataL;								//定义数据高8位和低8位的变量
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_XOUT_H);		//读取加速度计X轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_XOUT_L);		//读取加速度计X轴的低8位数据
	*AccX = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_YOUT_H);		//读取加速度计Y轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_YOUT_L);		//读取加速度计Y轴的低8位数据
	*AccY = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_H);		//读取加速度计Z轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_L);		//读取加速度计Z轴的低8位数据
	*AccZ = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_XOUT_H);		//读取陀螺仪X轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_XOUT_L);		//读取陀螺仪X轴的低8位数据
	*GyroX = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_YOUT_H);		//读取陀螺仪Y轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_YOUT_L);		//读取陀螺仪Y轴的低8位数据
	*GyroY = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_H);		//读取陀螺仪Z轴的高8位数据
	DataL = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_L);		//读取陀螺仪Z轴的低8位数据
	*GyroZ = (DataH << 8) | DataL;						//数据拼接,通过输出参数返回
}

2.3 MPU6050.H

复制代码
#ifndef __MPU6050_H
#define __MPU6050_H

void MPU6050_WriteReg(uint8_t RegAddress, uint8_t Data);
uint8_t MPU6050_ReadReg(uint8_t RegAddress);

void MPU6050_Init(void);
uint8_t MPU6050_GetID(void);
void MPU6050_GetData(int16_t *AccX, int16_t *AccY, int16_t *AccZ, 
						int16_t *GyroX, int16_t *GyroY, int16_t *GyroZ);

#endif

2.4 MPU6050_Reg.h

复制代码
#ifndef __MPU6050_REG_H
#define __MPU6050_REG_H

#define	MPU6050_SMPLRT_DIV		0x19
#define	MPU6050_CONFIG			0x1A
#define	MPU6050_GYRO_CONFIG		0x1B
#define	MPU6050_ACCEL_CONFIG	0x1C

#define	MPU6050_ACCEL_XOUT_H	0x3B
#define	MPU6050_ACCEL_XOUT_L	0x3C
#define	MPU6050_ACCEL_YOUT_H	0x3D
#define	MPU6050_ACCEL_YOUT_L	0x3E
#define	MPU6050_ACCEL_ZOUT_H	0x3F
#define	MPU6050_ACCEL_ZOUT_L	0x40
#define	MPU6050_TEMP_OUT_H		0x41
#define	MPU6050_TEMP_OUT_L		0x42
#define	MPU6050_GYRO_XOUT_H		0x43
#define	MPU6050_GYRO_XOUT_L		0x44
#define	MPU6050_GYRO_YOUT_H		0x45
#define	MPU6050_GYRO_YOUT_L		0x46
#define	MPU6050_GYRO_ZOUT_H		0x47
#define	MPU6050_GYRO_ZOUT_L		0x48

#define	MPU6050_PWR_MGMT_1		0x6B
#define	MPU6050_PWR_MGMT_2		0x6C
#define	MPU6050_WHO_AM_I		0x75

#endif

2.5 main.c

复制代码
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MPU6050.h"

uint8_t ID;								//定义用于存放ID号的变量
int16_t AX, AY, AZ, GX, GY, GZ;			//定义用于存放各个数据的变量

int main(void)
{
	/*模块初始化*/
	OLED_Init();		//OLED初始化
	MPU6050_Init();		//MPU6050初始化
	
	/*显示ID号*/
	OLED_ShowString(1, 1, "ID:");		//显示静态字符串
	ID = MPU6050_GetID();				//获取MPU6050的ID号
	OLED_ShowHexNum(1, 4, ID, 2);		//OLED显示ID号
	
	while (1)
	{
		MPU6050_GetData(&AX, &AY, &AZ, &GX, &GY, &GZ);		//获取MPU6050的数据
		OLED_ShowSignedNum(2, 1, AX, 5);					//OLED显示数据
		OLED_ShowSignedNum(3, 1, AY, 5);
		OLED_ShowSignedNum(4, 1, AZ, 5);
		OLED_ShowSignedNum(2, 8, GX, 5);
		OLED_ShowSignedNum(3, 8, GY, 5);
		OLED_ShowSignedNum(4, 8, GZ, 5);
	}
}
相关推荐
智商偏低4 小时前
单片机之helloworld
单片机·嵌入式硬件
青牛科技-Allen5 小时前
GC3910S:一款高性能双通道直流电机驱动芯片
stm32·单片机·嵌入式硬件·机器人·医疗器械·水泵、
森焱森7 小时前
无人机三轴稳定控制(2)____根据目标俯仰角,实现俯仰稳定化控制,计算出升降舵输出
c语言·单片机·算法·架构·无人机
白鱼不小白7 小时前
stm32 USART串口协议与外设(程序)——江协教程踩坑经验分享
stm32·单片机·嵌入式硬件
S,D8 小时前
MCU引脚的漏电流、灌电流、拉电流区别是什么
驱动开发·stm32·单片机·嵌入式硬件·mcu·物联网·硬件工程
芯岭技术11 小时前
PY32F002A单片机 低成本控制器解决方案,提供多种封装
单片机·嵌入式硬件
youmdt11 小时前
Arduino IDE ESP8266连接0.96寸SSD1306 IIC单色屏显示北京时间
单片机·嵌入式硬件
嘿·嘘12 小时前
第七章 STM32内部FLASH读写
stm32·单片机·嵌入式硬件
Meraki.Zhang12 小时前
【STM32实践篇】:I2C驱动编写
stm32·单片机·iic·驱动·i2c
几个几个n14 小时前
STM32-第二节-GPIO输入(按键,传感器)
单片机·嵌入式硬件