基于STM32和人工智能的自动驾驶小车系统

目录

  1. 引言
  2. 环境准备
  3. 自动驾驶小车系统基础
  4. 代码实现 :实现自动驾驶小车系统
    • 4.1 数据采集模块
    • 4.2 数据处理与分析
    • 4.3 控制系统
    • 4.4 用户界面与数据可视化
  5. 应用场景:自动驾驶应用与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

随着人工智能和嵌入式系统技术的发展,自动驾驶技术在交通、物流等领域得到了广泛应用。本文将详细介绍如何在STM32嵌入式系统中结合人工智能技术实现一个自动驾驶小车系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • 超声波传感器:用于距离测量和避障
  • 红外传感器:用于线路跟踪
  • 摄像头模块:用于图像识别
  • 电机驱动模块:如L298N,用于控制电机
  • 直流电机:用于驱动小车
  • 显示屏:如TFT LCD显示屏
  • 按键或旋钮:用于用户输入和设置
  • 电源:12V或24V电源适配器

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库、TensorFlow Lite
  • 人工智能模型:用于图像识别和路径规划

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序
  5. 下载并集成 TensorFlow Lite 库

3. 自动驾驶小车系统基础

控制系统架构

自动驾驶小车系统由以下部分组成:

  • 数据采集模块:用于采集环境数据(距离、图像、线路等)
  • 数据处理与分析:使用人工智能算法对采集的数据进行分析和路径规划
  • 控制系统:根据分析结果控制电机驱动小车
  • 显示系统:用于显示小车状态和路径信息
  • 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过超声波传感器、红外传感器和摄像头采集环境数据,并使用人工智能算法进行分析和路径规划,控制电机驱动小车自动行驶和避障。用户可以通过按键或旋钮进行设置,并通过显示屏查看小车状态和路径信息。

4. 代码实现:实现自动驾驶小车系统

4.1 数据采集模块

配置超声波传感器

使用STM32CubeMX配置GPIO和TIM接口:

打开STM32CubeMX,选择您的STM32开发板型号。

在图形化界面中,找到需要配置的GPIO和TIM引脚,设置为输入模式。

生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"

#define TRIG_PIN GPIO_PIN_0
#define ECHO_PIN GPIO_PIN_1
#define GPIO_PORT GPIOA

TIM_HandleTypeDef htim2;

void GPIO_Init(void) {
    __HAL_RCC_GPIOA_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = TRIG_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);

    GPIO_InitStruct.Pin = ECHO_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

void TIM_Init(void) {
    __HAL_RCC_TIM2_CLK_ENABLE();

    TIM_ClockConfigTypeDef sClockSourceConfig = {0};
    TIM_MasterConfigTypeDef sMasterConfig = {0};

    htim2.Instance = TIM2;
    htim2.Init.Prescaler = 84 - 1;
    htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
    htim2.Init.Period = 0xFFFF;
    htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
    HAL_TIM_Base_Init(&htim2);

    sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
    HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig);
    HAL_TIM_Base_Start(&htim2);
}

uint32_t Read_Ultrasonic_Distance(void) {
    uint32_t local_time = 0;
    HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_SET);
    HAL_Delay(10);
    HAL_GPIO_WritePin(GPIO_PORT, TRIG_PIN, GPIO_PIN_RESET);

    while (!(HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN)));
    while (HAL_GPIO_ReadPin(GPIO_PORT, ECHO_PIN)) {
        local_time++;
        HAL_Delay(1);
    }
    return local_time;
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();
    TIM_Init();

    uint32_t distance;

    while (1) {
        distance = Read_Ultrasonic_Distance();
        HAL_Delay(100

配置红外传感器

使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。

在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。

生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"

#define IR_SENSOR_PIN GPIO_PIN_2
#define GPIO_PORT GPIOA

void GPIO_Init(void) {
    __HAL_RCC_GPIOA_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = IR_SENSOR_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

uint8_t Read_IR_Sensor(void) {
    return HAL_GPIO_ReadPin(GPIO_PORT, IR_SENSOR_PIN);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();

    uint8_t ir_state;

    while (1) {
        ir_state = Read_IR_Sensor();
        HAL_Delay(1000);
    }
}

配置摄像头模块

使用STM32CubeMX配置SPI或I2C接口:

打开STM32CubeMX,选择您的STM32开发板型号。

在图形化界面中,找到需要配置的SPI或I2C引脚,设置为相应的通信模式。

生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "camera.h"

void Camera_Init(void) {
    // 初始化摄像头模块
}

void Camera_Capture_Image(uint8_t* image_buffer) {
    // 捕获图像数据
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    Camera_Init();

    uint8_t image_buffer[IMAGE_SIZE];

    while (1) {
        Camera_Capture_Image(image_buffer);
        HAL_Delay(5000);  // 每5秒捕获一次图像
    }
}

4.2 数据处理与分析

集成TensorFlow Lite进行数据分析

使用STM32CubeMX配置必要的接口,确保嵌入式系统能够加载和运行TensorFlow Lite模型。

代码实现

#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "model_data.h"  // 人工智能模型数据

namespace {
    tflite::MicroErrorReporter micro_error_reporter;
    tflite::MicroInterpreter* interpreter = nullptr;
    TfLiteTensor* input = nullptr;
    TfLiteTensor* output = nullptr;
    constexpr int kTensorArenaSize = 2 * 1024;
    uint8_t tensor_arena[kTensorArenaSize];
}

void AI_Init(void) {
    tflite::InitializeTarget();

    static tflite::MicroMutableOpResolver<10> micro_op_resolver;
    micro_op_resolver.AddFullyConnected();
    micro_op_resolver.AddSoftmax();

    const tflite::Model* model = tflite::GetModel(model_data);
    if (model->version() !=
    if (model->version() != TFLITE_SCHEMA_VERSION) {
        TF_LITE_REPORT_ERROR(&micro_error_reporter,
                             "Model provided is schema version %d not equal "
                             "to supported version %d.",
                             model->version(), TFLITE_SCHEMA_VERSION);
        return;
    }

    static tflite::MicroInterpreter static_interpreter(
        model, micro_op_resolver, tensor_arena, kTensorArenaSize,
        &micro_error_reporter);
    interpreter = &static_interpreter;

    interpreter->AllocateTensors();

    input = interpreter->input(0);
    output = interpreter->output(0);
}

void AI_Run_Inference(uint8_t* image_data, float* output_data) {
    // 拷贝输入数据到模型输入张量
    for (int i = 0; i < input->dims->data[1]; ++i) {
        input->data.uint8[i] = image_data[i];
    }

    // 运行模型推理
    if (interpreter->Invoke() != kTfLiteOk) {
        TF_LITE_REPORT_ERROR(&micro_error_reporter, "Invoke failed.");
        return;
    }

    // 拷贝输出数据
    for (int i = 0; i < output->dims->data[1]; ++i) {
        output_data[i] = output->data.f[i];
    }
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    AI_Init();
    Camera_Init();

    uint8_t image_buffer[IMAGE_SIZE];
    float output_data[OUTPUT_SIZE];

    while (1) {
        // 捕获图像数据
        Camera_Capture_Image(image_buffer);

        // 运行AI推理
        AI_Run_Inference(image_buffer, output_data);

        // 根据模型输出数据执行相应的操作
        HAL_Delay(1000);
    }
}

4.3 控制系统

配置GPIO控制电机驱动模块

使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。

在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。

生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"

#define MOTOR_LEFT_PIN GPIO_PIN_0
#define MOTOR_RIGHT_PIN GPIO_PIN_1
#define GPIO_PORT GPIOB

void GPIO_Init(void) {
    __HAL_RCC_GPIOB_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = MOTOR_LEFT_PIN | MOTOR_RIGHT_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

void Control_Motor(uint8_t left_state, uint8_t right_state) {
    HAL_GPIO_WritePin(GPIO_PORT, MOTOR_LEFT_PIN, left_state ? GPIO_PIN_SET : GPIO_PIN_RESET);
    HAL_GPIO_WritePin(GPIO_PORT, MOTOR_RIGHT_PIN, right_state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();
    AI_Init();

    uint8_t left_motor_state;
    uint8_t right_motor_state;
    uint8_t image_buffer[IMAGE_SIZE];
    float output_data[OUTPUT_SIZE];

    while (1) {
        // 捕获图像数据
        Camera_Capture_Image(image_buffer);

        // 运行AI推理
        AI_Run_Inference(image_buffer, output_data);

        // 根据AI输出控制电机
        left_motor_state = output_data[0] > 0.5;
        right_motor_state = output_data[1] > 0.5;

        Control_Motor(left_motor_state, right_motor_state);

        HAL_Delay(100);
    }
}

4.4 用户界面与数据可视化

配置TFT LCD显示屏

使用STM32CubeMX配置SPI接口:

打开STM32CubeMX,选择您的STM32开发板型号。

在图形化界面中,找到需要配置的SPI引脚,设置为SPI模式。

生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "spi.h"
#include "lcd_tft.h"

void Display_Init(void) {
    LCD_TFT_Init();
}

void Display_Car_Data(float* output_data) {
    char buffer[32];
    sprintf(buffer, "Left Motor: %s", output_data[0] > 0.5 ? "ON" : "OFF");
    LCD_TFT_Print(buffer);
    sprintf(buffer, "Right Motor: %s", output_data[1] > 0.5 ? "ON" : "OFF");
    LCD_TFT_Print(buffer);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();
    AI_Init();
    Display_Init();

    uint8_t image_buffer[IMAGE_SIZE];
    float output_data[OUTPUT_SIZE];

    while (1) {
        // 捕获图像数据并填充 input_data 数组
        Camera_Capture_Image(image_buffer);

        // 运行AI推理
        AI_Run_Inference(image_buffer, output_data);

        // 显示小车状态数据和AI结果
        Display_Car_Data(output_data);

        // 根据AI结果控制电机
        uint8_t left_motor_state = output_data[0] > 0.5;
        uint8_t right_motor_state = output_data[1] > 0.5;

        Control_Motor(left_motor_state, right_motor_state);

        HAL_Delay(100);
    }
}

5. 应用场景:自动驾驶应用与优化

智能物流

自动驾驶小车可以应用于物流领域,通过智能路径规划和避障技术,提高物流运输效率和安全性。

智能农业

在农业领域,自动驾驶小车可以用于农作物的种植和管理,自动化执行各种农务操作,提升农业生产力。

智能巡检

自动驾驶小车可以用于工业和基础设施的巡检,通过实时监控和数据分析,及时发现和处理问题。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。
  2. 设备响应延迟:优化控制逻辑和硬件配置,减少设备响应时间,提高系统反应速度。
  3. 显示屏显示异常:检查SPI通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

优化建议

  1. 数据集成与分析:集成更多类型的传感器数据,使用大数据分析和机器学习技术进行环境预测和趋势分析。
  2. 用户交互优化:改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。
  3. 智能化控制提升:增加智能决策支持系统,根据历史数据和实时数据自动调整控制策略,实现更高效的自动驾驶管理。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中结合人工智能技术实现智能自动驾驶小车,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的自动驾驶小车系统。在实际应用中,还可以根据具体需求进行优化和扩展,提升系统的性能和可靠性。

相关推荐
湫ccc29 分钟前
《Opencv》基础操作详解(2)
人工智能·opencv·计算机视觉
羑悻的小杀马特30 分钟前
【AIGC篇】畅谈游戏开发设计中AIGC所发挥的不可或缺的作用
c++·人工智能·aigc·游戏开发
CES_Asia39 分钟前
国资助力科技创新,闪耀CES Asia 2025
人工智能·科技·智能手机·智能音箱·智能电视
eric-sjq1 小时前
基于xiaothink对Wanyv-50M模型进行c-eval评估
人工智能·python·语言模型·自然语言处理·github
是十一月末1 小时前
机器学习之KNN算法预测数据和数据可视化
人工智能·python·算法·机器学习·信息可视化
工业互联网专业1 小时前
基于OpenCV和Python的人脸识别系统_django
人工智能·python·opencv·django·毕业设计·源码·课程设计
紫阡星影2 小时前
【模块系列】STM32&1.69TFT屏幕
stm32·单片机·嵌入式硬件
彭某。2 小时前
STM32低功耗模式结合看门狗
stm32·单片机·嵌入式硬件
ai产品老杨2 小时前
报警推送消息升级的名厨亮灶开源了。
vue.js·人工智能·安全·开源·音视频
智源研究院官方账号2 小时前
智源研究院与安谋科技达成战略合作,共建开源AI“芯”生态
人工智能·开源