扩散模型 GLIDE:35 亿参数的情况下优于 120 亿参数的 DALL-E 模型

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学。

针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

合集:

《AIGC 面试宝典》已圈粉无数!


论文:GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models

代码:https://link.zhihu.com/?target=https%3A//github.com/openai/glide-text2im

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗技术与面试交流群 , 想要大模型技术交流、了解最新面试动态的、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

想加入星球也可以如下方式:

方式①、微信搜索公众号:机器学习社区,后台回复:交流

方式②、添加微信号:mlc2040,备注:交流

一、背景

在扩散模型经过了一系列发展之后,Openai 开始探索文本条件下的图像生成,并在这篇论文里对比了两种不同的 guidance 策略,分别是通过 CLIP 引导和 classifier-free 的引导。

验证了 classifier-free 的方式生成的图片更真实,与提示的文本有更好的相关性。并且使用 classifier-free 的引导的 GLIDE模型在 35 亿参数的情况下优于 120 亿参数的 DALL-E 模型

二、方法

作者训练的模型包括:

  • 一个 35 亿参数量的 text-conditional 扩散模型,分辨率为 64*64
  • 一个 15 亿参数量的 text-conditional 上采样扩散模型,将分辨率提升至 256x256
  • 对于 CLIP guidance 模型,还额外训练了一个 64x64 noised ViT-L CLIP

三、效果

3.1 不同引导方式的对比:
3.2 定量对比

精选

相关推荐
松岛雾奈.2301 分钟前
深度学习--TensorFlow框架使用
深度学习·tensorflow·neo4j
中杯可乐多加冰12 分钟前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
IT_陈寒37 分钟前
Redis实战:5个高频应用场景下的性能优化技巧,让你的QPS提升50%
前端·人工智能·后端
龙智DevSecOps解决方案1 小时前
Perforce《2025游戏技术现状报告》Part 1:游戏引擎技术的广泛影响以及生成式AI的成熟之路
人工智能·unity·游戏引擎·游戏开发·perforce
大佬,救命!!!1 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
星空的资源小屋1 小时前
VNote:程序员必备Markdown笔记神器
javascript·人工智能·笔记·django
梵得儿SHI1 小时前
(第七篇)Spring AI 基础入门总结:四层技术栈全景图 + 三大坑根治方案 + RAG 进阶预告
java·人工智能·spring·springai的四大核心能力·向量维度·prompt模板化·向量存储检索
亚马逊云开发者1 小时前
Amazon Bedrock助力飞书深诺电商广告分类
人工智能
2301_823438021 小时前
解析论文《复杂海上救援环境中无人机群的双阶段协作路径规划与任务分配》
人工智能·算法·无人机
程序员鱼皮1 小时前
又被 Cursor 烧了 1 万块,我麻了。。。
前端·后端·ai·程序员·大模型·编程