【线性代数】实对称

对称矩阵是在线性代数中非常重要的一类矩阵。一个矩阵 \( A \) 被称为对称矩阵,如果它等于其转置矩阵,即 \( A = A^T \)。对称矩阵具有以下几个重要性质:

1. 特征值和特征向量

  • **实特征值**:对称矩阵的所有特征值都是实数。

  • **正交特征向量**:对于不同特征值对应的特征向量是正交的,即如果 \( \lambda_1 \) 和 \( \lambda_2 \) 是不同的特征值,对应的特征向量 \( \mathbf{v}_1 \) 和 \( \mathbf{v}_2 \) 满足 \( \mathbf{v}_1^T \mathbf{v}_2 = 0 \)。

  • **正交对角化**:对称矩阵可以被正交对角化,即存在一个正交矩阵 \( Q \) 和一个对角矩阵 \( \Lambda \) 使得:

\[

A = Q \Lambda Q^T

\]

其中,\( \Lambda \) 的对角元素是 \( A \) 的特征值,\( Q \) 的列是 \( A \) 的正交特征向量。

2. 半正定性

  • **正定矩阵**:如果对称矩阵 \( A \) 的所有特征值都大于零,那么 \( A \) 是正定矩阵。

  • **半正定矩阵**:如果对称矩阵 \( A \) 的所有特征值都大于等于零,那么 \( A \) 是半正定矩阵。

3. 内积

  • 对称矩阵可以定义一个新的内积。例如,如果 \( A \) 是一个对称矩阵,\( \mathbf{x} \) 和 \( \mathbf{y} \) 是向量,那么 \( \mathbf{x}^T A \mathbf{y} \) 定义了一个双线性形式。

4. 运算性质

  • **加法和减法**:两个对称矩阵的和或差仍然是对称矩阵。

  • **数乘**:对称矩阵乘以一个标量仍然是对称矩阵。

  • **乘法**:两个对称矩阵的乘积一般不是对称矩阵,但是如果 \( A \) 和 \( B \) 是对称矩阵并且它们可交换(即 \( AB = BA \)),那么它们的乘积 \( AB \) 仍然是对称矩阵。

5. 矩阵函数

  • 对称矩阵应用任何解析函数(如指数函数、对数函数等)后,得到的矩阵仍然是对称矩阵。

证明示例

举一个关于对称矩阵性质的简单证明:

**命题**:对称矩阵 \( A \) 的所有特征值都是实数。

**证明**:

假设 \( \mathbf{v} \) 是 \( A \) 的一个特征向量,对应的特征值为 \( \lambda \),即 \( A \mathbf{v} = \lambda \mathbf{v} \)。

考虑 \( \mathbf{v} \) 和 \( A \mathbf{v} \) 的内积:

\[

\mathbf{v}^T A \mathbf{v} = \mathbf{v}^T (\lambda \mathbf{v}) = \lambda (\mathbf{v}^T \mathbf{v})

\]

因为 \( A \) 是对称矩阵, \( \mathbf{v}^T A \mathbf{v} = (A \mathbf{v})^T \mathbf{v} = (\lambda \mathbf{v})^T \mathbf{v} = \lambda^* (\mathbf{v}^T \mathbf{v}) \),其中 \( \lambda^* \) 是 \( \lambda \) 的共轭复数。

由于 \( \mathbf{v}^T \mathbf{v} \) 是实数且不为零(因为 \( \mathbf{v} \) 是特征向量,不为零),我们有:

\[

\lambda (\mathbf{v}^T \mathbf{v}) = \lambda^* (\mathbf{v}^T \mathbf{v})

\]

所以 \( \lambda = \lambda^* \),这表明 \( \lambda \) 是实数。

这就证明了对称矩阵的所有特征值都是实数。

这些性质使对称矩阵在各种应用中非常有用,包括物理学、工程学和计算数学等领域。

相关推荐
数据科学作家2 小时前
学数据分析必囤!数据分析必看!清华社9本书覆盖Stata/SPSS/Python全阶段学习路径
人工智能·python·机器学习·数据分析·统计·stata·spss
CV缝合救星3 小时前
【Arxiv 2025 预发行论文】重磅突破!STAR-DSSA 模块横空出世:显著性+拓扑双重加持,小目标、大场景统统拿下!
人工智能·深度学习·计算机视觉·目标跟踪·即插即用模块
java1234_小锋4 小时前
Scikit-learn Python机器学习 - 特征预处理 - 标准化 (Standardization):StandardScaler
python·机器学习·scikit-learn
TDengine (老段)5 小时前
从 ETL 到 Agentic AI:工业数据管理变革与 TDengine IDMP 的治理之道
数据库·数据仓库·人工智能·物联网·时序数据库·etl·tdengine
蓝桉8026 小时前
如何进行神经网络的模型训练(视频代码中的知识点记录)
人工智能·深度学习·神经网络
星期天要睡觉6 小时前
深度学习——数据增强(Data Augmentation)
人工智能·深度学习
南山二毛7 小时前
机器人控制器开发(导航算法——导航栈关联坐标系)
人工智能·架构·机器人
大数据张老师8 小时前
【案例】AI语音识别系统的标注分区策略
人工智能·系统架构·语音识别·架构设计·后端架构
xz2024102****8 小时前
吴恩达机器学习合集
人工智能·机器学习
anneCoder8 小时前
AI大模型应用研发工程师面试知识准备目录
人工智能·深度学习·机器学习