【教程】如何一步一步训练一个SOM神经网络-自组织竞争神经网络(Self-organizing Feature Map)

本文来自《老饼讲解-BP神经网络》https://www.bbbdata.com/

目录

SOM神经网络全称为自组织竞争神经网络(Self-organizing Feature Map),它是Kohonen在1981年提出的一种用于聚类的神经网络,本文讲解如何一步一步训练一个SOM神经网络。

一、什么是SOM神经网络

1.1.SOM神经网络有什么用

SOM神经网络主要用来解决聚类问题,聚类问题是一种无监督学习,就是对样本进行分类,

通过算法,找出N个聚类中心,样本离哪个聚类中心最近,就将样本判为哪一个类别。

如上示所,经过聚类算法后,将样本划分为不同的类别。

1.2.SOM神经网络是如何聚类的

SOM按一个固定的拓扑初始化聚类中心,如下所示就是SOM常用的六边形拓扑结构

进一步地,根据Kohonen规则更新聚类中心,SOM与Kohonen的不同是,SOM会把邻近的聚类中心一起更新(这就是为什么SOM会引入拓扑结构来连结各个聚类中心了)。

以神经网络的拓扑图来展示SOM神经网络时,则如下:

输入是样本,隐层的各个隐节点就是各个聚类中心,最终样本离哪个聚类中心最近,就判断样本属于哪个类别。

二、如何训练一个SOM神经网络

2.1. 训练一个SOM神经网络的代码示例

在matlab中可以使用selforgmap来训练一个SOM神经网络,示例代码如下:

matlab 复制代码
% 本demo展示用matlab工具箱训练一个SOM神经网络
% 生成用于聚类的数据
rand('seed',70);                                   % 随机种子,设定随机种子是为了每次的结果一样
dataC = [2.5,2.5;7.5,2.5;2.5,7.5;7.5,7.5]';        % 生成四个样本中心
sn = 80;                                           % 样本个数
X = rand(2,sn)+dataC(:,mod(1:sn,4)+1);             % 随机生成样本点
											       
% 调用工具箱训练一个SOM网络                        
net = selforgmap([3 5]);                           % 建立一个SOM神经网络
net = train(net,X);                                % 训练网络
W   = net.IW{1};                                   % 网络的权重,也即各个聚类中心的位置
y   = net(X);                                      % 用训练好的网络进行预测
classes = vec2ind(y);                              % 将预测结果由one-hot格式转为类别索引

% 绘图
plot(X(1,:),X(2,:),'*');                           % 原始样本
hold on 
plot(W(:,1),W(:,2),'or','MarkerFaceColor','g');    % 网络训练好的聚类中心

运行结果如下

绿色的隐神经元(聚类中心),红色的是样本,可见SOM神经网络已经基本较为合理地将样本进行聚类了。

2.2. 如何查看SOM神经网络的聚类中心

SOM神经网络的权重W就是各个聚类中心,只需要使用用net.IW{1}就可以提取出来,如下所示:

上面就是我们训练得到的15个聚类中心的位置了。


相关链接:

《老饼讲解-机器学习》:老饼讲解-机器学习教程-通俗易懂

《老饼讲解-神经网络》:老饼讲解-matlab神经网络-通俗易懂

《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂

相关推荐
艾莉丝努力练剑5 小时前
【Python基础:语法第一课】Python 基础语法详解:变量、类型、动态特性与运算符实战,构建完整的编程基础认知体系
大数据·人工智能·爬虫·python·pycharm·编辑器
MobotStone5 小时前
数字沟通之道
人工智能·算法
Together_CZ5 小时前
Cambrian-S: Towards Spatial Supersensing in Video——迈向视频中的空间超感知
人工智能·机器学习·音视频·spatial·cambrian-s·迈向视频中的空间超感知·supersensing
caiyueloveclamp6 小时前
【功能介绍05】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI辅写+分享篇】
人工智能·powerpoint·ai生成ppt·aippt·免费aippt
Aileen_0v06 小时前
【Gemini3.0的国内use教程】
android·人工智能·算法·开源·mariadb
xiaogutou11216 小时前
5款软件,让歌唱比赛海报设计更简单
人工智能
后端小张6 小时前
智眼法盾:基于Rokid AR眼镜的合同条款智能审查系统开发全解析
人工智能·目标检测·计算机视觉·ai·语言模型·ar·硬件架构
dalalajjl6 小时前
每个Python开发者都应该试试知道创宇AiPy!工作效率提升500%的秘密武器
大数据·人工智能
wheeldown6 小时前
【Rokid+CXR-M】基于Rokid CXR-M SDK的博物馆AR导览系统开发全解析
c++·人工智能·ar
爱看科技6 小时前
AI智能计算竞赛“战火重燃”,谷歌/高通/微美全息构建AI全栈算力开启巅峰角逐新篇
人工智能