COD论文笔记 TCSVT_2024 Finding_Camouflaged_Objects_Along_the_Camouflage_Mechanisms

动机

论文的动机是重新审视伪装物体检测(COD)任务,并从伪装机制的角度提出一种新的解码伪装的方法。传统的COD方法难以准确区分伪装物体和背景,因此作者提出通过借助显著物体检测(SOD)任务来实现解码伪装,从而更好地检测伪装物体。

贡献

  1. 多任务学习框架:提出了一种新的多任务学习框架,将显著物体检测任务(SOD)引入到伪装物体检测(COD)模型中,以利用两者之间的内在关系来破坏伪装条件,从而突出伪装物体的线索。
  2. 任务冲突属性建模:通过门控分类策略(GC)和区域干扰模块(RDM)来缓解显著物体对伪装物体检测的干扰。
  3. 任务一致属性建模:通过对抗学习(AL)方案和边界注入模块(BIM)来增强伪装物体和背景之间的边界差异,以便全面分割伪装物体。

创新点

  1. 解码伪装方法 :首次从解码伪装的角度来研究伪装物体检测任务,提出了一种新的方法,能够更好地理解伪装机制并检测伪装物体。
  2. 多任务学习框架 :创新性地将显著物体检测任务和伪装物体检测任务结合,通过任务冲突属性和任务一致属性的建模,实现对伪装物体的准确定位和完整分割。
  3. 区域干扰模块(RDM) :提出了一个新颖的分离-重组策略,减少COD网络对显著物体或区域的关注,捕捉更多与伪装相关的线索。
  4. 门控分类策略(GC):通过建模和放大显著物体和伪装物体之间的关系差异,有效抑制最终伪装预测结果中误保留的显著物体或区域。
  5. 对抗学习(AL):通过对抗学习方案,增强伪装物体边界的表示能力,促进伪装物体的全面检测。
  6. 边界注入模块(BIM):通过注入边界相关特征来增强物体相关特征,改进伪装物体的检测效果。

这些创新点显著提升了伪装物体检测的性能,实验结果表明,提出的模型在多个COD数据集上均优于现有方法。

相关推荐
DuHz18 小时前
无线通信与雷达感知融合的波形设计与信号处理——论文阅读(上)
论文阅读·信号处理
DuHz19 小时前
无线通信与雷达感知融合的波形设计与信号处理——论文阅读(下)
论文阅读·汽车·信息与通信·信号处理
张较瘦_2 天前
[论文阅读] AI + 软件工程 | LLM救场Serverless开发!SlsReuse框架让函数复用率飙升至91%,还快了44%
论文阅读·人工智能·软件工程
m0_650108242 天前
InstructBLIP:面向通用视觉语言模型的指令微调技术解析
论文阅读·人工智能·q-former·指令微调的视觉语言大模型·零样本跨任务泛化·通用视觉语言模型
做cv的小昊3 天前
VLM经典论文阅读:【综述】An Introduction to Vision-Language Modeling
论文阅读·人工智能·计算机视觉·语言模型·自然语言处理·bert·transformer
m0_650108244 天前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
m0_650108244 天前
PaLM:Pathways 驱动的大规模语言模型 scaling 实践
论文阅读·人工智能·palm·谷歌大模型·大规模语言模型·全面评估与行为分析·scaling效应
小殊小殊4 天前
【论文笔记】视频RAG-Vgent:基于图结构的视频检索推理框架
论文阅读·人工智能·深度学习
有点不太正常4 天前
《ShadowCoT: Cognitive Hijacking for Stealthy Reasoning Backdoors in LLMs》——论文阅读
论文阅读·大模型·agent安全
小殊小殊4 天前
【论文笔记】大型语言模型的知识蒸馏与数据集蒸馏
论文阅读·人工智能·深度学习