昇思25天学习打卡营第8天|保存与加载

1. 学习内容复盘

1.1 保存与加载

上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。。

1.保存和加载模型权重

保存模型使用save_checkpoint接口,传入网络和指定的保存路径。

2.保存和加载MindIR

除Checkpoint外,MindSpore提供了云侧(训练)和端侧(推理)统一的中间表示(Intermediate Representation,IR)。可使用export接口直接将模型保存为MindIR。

2.平台实验结果

相关推荐
春日见20 分钟前
自动驾驶规划控制决策知识点扫盲
linux·运维·服务器·人工智能·机器学习·自动驾驶
人工智能AI技术28 分钟前
【Agent从入门到实践】43 接口封装:将Agent封装为API服务,供其他系统调用
人工智能·python
云边散步29 分钟前
godot2D游戏教程系列二(4)
笔记·学习·游戏开发
hjs_deeplearning30 分钟前
文献阅读篇#14:自动驾驶中的基础模型:场景生成与场景分析综述(5)
人工智能·机器学习·自动驾驶
nju_spy43 分钟前
离线强化学习(一)BCQ 批量限制 Q-learning
人工智能·强化学习·cvae·离线强化学习·双 q 学习·bcq·外推泛化误差
jrlong1 小时前
DataWhale大模型基础与量化微调task4学习笔记(第 2 章:高级微调技术_RLHF 技术详解)
笔记·学习
副露のmagic1 小时前
深度学习基础复健
人工智能·深度学习
番茄大王sc1 小时前
2026年科研AI工具深度测评(一):文献调研与综述生成领域,维普科创助手领跑学术严谨性
人工智能·深度学习·考研·学习方法·论文笔记
Darkershadow1 小时前
蓝牙学习之Time Set
python·学习·蓝牙·ble·mesh
代码丰1 小时前
SpringAI+RAG向量库+知识图谱+多模型路由+Docker打造SmartHR智能招聘助手
人工智能·spring·知识图谱