昇思25天学习打卡营第8天|保存与加载

1. 学习内容复盘

1.1 保存与加载

上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。。

1.保存和加载模型权重

保存模型使用save_checkpoint接口,传入网络和指定的保存路径。

2.保存和加载MindIR

除Checkpoint外,MindSpore提供了云侧(训练)和端侧(推理)统一的中间表示(Intermediate Representation,IR)。可使用export接口直接将模型保存为MindIR。

2.平台实验结果

相关推荐
_Kayo_4 小时前
node.js 学习笔记3 HTTP
笔记·学习
Moshow郑锴5 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20255 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR6 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散136 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
CCCC13101637 小时前
嵌入式学习(day 28)线程
jvm·学习
mit6.8247 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945197 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
星星火柴9367 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
小狗爱吃黄桃罐头8 小时前
正点原子【第四期】Linux之驱动开发篇学习笔记-1.1 Linux驱动开发与裸机开发的区别
linux·驱动开发·学习