昇思25天学习打卡营第8天|保存与加载

1. 学习内容复盘

1.1 保存与加载

上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。。

1.保存和加载模型权重

保存模型使用save_checkpoint接口,传入网络和指定的保存路径。

2.保存和加载MindIR

除Checkpoint外,MindSpore提供了云侧(训练)和端侧(推理)统一的中间表示(Intermediate Representation,IR)。可使用export接口直接将模型保存为MindIR。

2.平台实验结果

相关推荐
哆啦A梦的口袋呀7 分钟前
基于Python学习《Head First设计模式》第七章 适配器和外观模式
python·学习·设计模式
恰薯条的屑海鸥10 分钟前
零基础在实践中学习网络安全-皮卡丘靶场(第十期-Over Permission 模块)
学习·安全·web安全·渗透测试·网络安全学习
新加坡内哥谈技术30 分钟前
Meta计划借助AI实现广告创作全自动化
运维·人工智能·自动化
东京老树根1 小时前
SAP学习笔记 - 开发27 - 前端Fiori开发 Routing and Navigation(路由和导航)
笔记·学习
西猫雷婶1 小时前
pytorch基本运算-导数和f-string
人工智能·pytorch·python
Johny_Zhao1 小时前
华为MAAS、阿里云PAI、亚马逊AWS SageMaker、微软Azure ML各大模型深度分析对比
linux·人工智能·ai·信息安全·云计算·系统运维
顽强卖力1 小时前
第二十八课:深度学习及pytorch简介
人工智能·pytorch·深度学习
述雾学java1 小时前
深入理解 transforms.Normalize():PyTorch 图像预处理中的关键一步
人工智能·pytorch·python
武子康1 小时前
大数据-276 Spark MLib - 基础介绍 机器学习算法 Bagging和Boosting区别 GBDT梯度提升树
大数据·人工智能·算法·机器学习·语言模型·spark-ml·boosting
要努力啊啊啊1 小时前
使用 Python + SQLAlchemy 创建知识库数据库(SQLite)—— 构建本地知识库系统的基础《一》
数据库·人工智能·python·深度学习·自然语言处理·sqlite