昇思25天学习打卡营第8天|保存与加载

1. 学习内容复盘

1.1 保存与加载

上一章节主要介绍了如何调整超参数,并进行网络模型训练。在训练网络模型的过程中,实际上我们希望保存中间和最后的结果,用于微调(fine-tune)和后续的模型推理与部署,本章节我们将介绍如何保存与加载模型。。

1.保存和加载模型权重

保存模型使用save_checkpoint接口,传入网络和指定的保存路径。

2.保存和加载MindIR

除Checkpoint外,MindSpore提供了云侧(训练)和端侧(推理)统一的中间表示(Intermediate Representation,IR)。可使用export接口直接将模型保存为MindIR。

2.平台实验结果

相关推荐
kakaZhui19 分钟前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
charlie11451419144 分钟前
从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(协议层封装)
c语言·驱动开发·单片机·学习·教程·oled
struggle20251 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥1 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
马船长2 小时前
[BSidesCF 2020]Had a bad day1
学习
黄交大彭于晏2 小时前
三端回链增加截图功能
学习
linwq82 小时前
设计模式学习(二)
java·学习·设计模式
云空2 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代2 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
Fhd-学习笔记3 小时前
《大语言模型》综述学习笔记
笔记·学习·语言模型