神经网络实战2-损失函数和反向传播


其实就是通过求偏导的方式,求出各个权重大小

loss函数是找最小值的,要求导,在计算机里面计算导数是倒着来的,所以叫反向传播。

c 复制代码
import  torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)
target=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(1,1,1,3))#这里rershape的目的是增加batch_size这一数据
target=torch.reshape(target,(1,1,1,3))
loss=L1Loss()
result=loss(inputs,target)
print(result)

对以上的一个简单设计

loss的默认reduction是mean即平均值

我们需要的是相加

c 复制代码
import  torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)
target=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(1,1,1,3))#这里rershape的目的是增加batch_size这一数据
target=torch.reshape(target,(1,1,1,3))
loss=L1Loss(reduction='sum')
result=loss(inputs,target)
print(result)

均方差

反向传播

相关推荐
千宇宙航3 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
IT古董3 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
onceco4 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
天水幼麟4 小时前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
天水幼麟7 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习
强哥之神10 小时前
英伟达发布 Llama Nemotron Nano 4B:专为边缘 AI 和科研任务优化的高效开源推理模型
人工智能·深度学习·语言模型·架构·llm·transformer·边缘计算
Green1Leaves10 小时前
pytorch学习-9.多分类问题
人工智能·pytorch·学习
陈敬雷-充电了么-CEO兼CTO11 小时前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
旷世奇才李先生12 小时前
Pillow 安装使用教程
深度学习·microsoft·pillow
acstdm15 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习