神经网络实战2-损失函数和反向传播


其实就是通过求偏导的方式,求出各个权重大小

loss函数是找最小值的,要求导,在计算机里面计算导数是倒着来的,所以叫反向传播。

c 复制代码
import  torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)
target=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(1,1,1,3))#这里rershape的目的是增加batch_size这一数据
target=torch.reshape(target,(1,1,1,3))
loss=L1Loss()
result=loss(inputs,target)
print(result)

对以上的一个简单设计

loss的默认reduction是mean即平均值

我们需要的是相加

c 复制代码
import  torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)
target=torch.tensor([1,2,5],dtype=torch.float32)

inputs=torch.reshape(inputs,(1,1,1,3))#这里rershape的目的是增加batch_size这一数据
target=torch.reshape(target,(1,1,1,3))
loss=L1Loss(reduction='sum')
result=loss(inputs,target)
print(result)

均方差

反向传播

相关推荐
B站_计算机毕业设计之家18 小时前
深度血虚:Django水果检测识别系统 CNN卷积神经网络算法 python语言 计算机 大数据✅
python·深度学习·计算机视觉·信息可视化·分类·cnn·django
Francek Chen19 小时前
【自然语言处理】预训练05:全局向量的词嵌入(GloVe)
人工智能·pytorch·深度学习·自然语言处理·glove
悠闲蜗牛�20 小时前
技术融合新纪元:深度学习、大数据与云原生的跨界实践
大数据·深度学习·云原生
嵌入式-老费1 天前
自己动手写深度学习框架(感知机)
人工智能·深度学习
化作星辰1 天前
使用 PyTorch来构建线性回归的实现
人工智能·pytorch·深度学习
谢景行^顾1 天前
深度学习-损失函数
人工智能·深度学习
极客BIM工作室1 天前
单层前馈神经网络的万能逼近定理
人工智能·深度学习·神经网络
吃个糖糖1 天前
Pytorch 学习之Transforms
人工智能·pytorch·学习
无水先生1 天前
数据集预处理:规范化和标准化
人工智能·深度学习
B站_计算机毕业设计之家1 天前
大数据YOLOv8无人机目标检测跟踪识别系统 深度学习 PySide界面设计 大数据 ✅
大数据·python·深度学习·信息可视化·数据挖掘·数据分析·flask