pytorch笔记:named_parameters

  • named_parameters 是 PyTorch 中一个非常有用的函数,用于访问模型中所有定义的参数及其对应的名称。
  • 它是 torch.nn.Module 类的方法之一,返回一个生成器,生成 (name, parameter) 对,name 是参数的名称,parameter 是对应的参数张量。

1 举例

1.0 创建模型

python 复制代码
import torch
import torch.nn as nn

# 定义一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 64, 5)
        self.fc1 = nn.Linear(64 * 4 * 4, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = torch.relu(self.conv1(x))
        x = torch.relu(self.conv2(x))
        x = x.view(-1, 64 * 4 * 4)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型
model_tst = SimpleModel()

1.1 应用1:打印模型的所有参数及其名称

python 复制代码
for name, param in model_tst.named_parameters():
    print(name, param.shape)

'''
conv1.weight torch.Size([20, 1, 5, 5])
conv1.bias torch.Size([20])
conv2.weight torch.Size([64, 20, 5, 5])
conv2.bias torch.Size([64])
fc1.weight torch.Size([500, 1024])
fc1.bias torch.Size([500])
fc2.weight torch.Size([10, 500])
fc2.bias torch.Size([10])
conv1.weight torch.Size([20, 1, 5, 5])
conv1.bias torch.Size([20])
conv2.weight torch.Size([64, 20, 5, 5])
conv2.bias torch.Size([64])
fc1.weight torch.Size([500, 1024])
fc1.bias torch.Size([500])
fc2.weight torch.Size([10, 500])
fc2.bias torch.Size([10])
'''

1.2 应用2:冻结特定层的参数

假设我们只想训练全连接层,而冻结卷积层的参数:

python 复制代码
for name, param in model_tst.named_parameters():
    if 'conv' in name:
        param.requires_grad = False

1.3 应用3:自定义优化器参数

可以使用 named_parameters 创建自定义的参数组,以便对不同的参数组应用不同的学习率:

python 复制代码
optimizer = torch.optim.SGD([
    {'params': [param for name, param in model_tst.named_parameters() if 'conv' in name], 'lr': 0.01},
    {'params': [param for name, param in model_tst.named_parameters() if 'fc' in name], 'lr': 0.1}
], momentum=0.9)
相关推荐
Dann Hiroaki1 小时前
笔记分享: 哈尔滨工业大学CS31002编译原理——02. 语法分析
笔记·算法
KhalilRuan1 小时前
Unity-MMORPG内容笔记-其三
笔记
九年义务漏网鲨鱼1 小时前
【大模型学习 | MINIGPT-4原理】
人工智能·深度学习·学习·语言模型·多模态
元宇宙时间2 小时前
Playfun即将开启大型Web3线上活动,打造沉浸式GameFi体验生态
人工智能·去中心化·区块链
开发者工具分享2 小时前
文本音频违规识别工具排行榜(12选)
人工智能·音视频
产品经理独孤虾2 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
老任与码2 小时前
Spring AI Alibaba(1)——基本使用
java·人工智能·后端·springaialibaba
kfepiza2 小时前
Debian的`/etc/network/interfaces`的`allow-hotplug`和`auto`对比讲解 笔记250704
linux·服务器·网络·笔记·debian
蹦蹦跳跳真可爱5892 小时前
Python----OpenCV(图像増强——高通滤波(索贝尔算子、沙尔算子、拉普拉斯算子),图像浮雕与特效处理)
人工智能·python·opencv·计算机视觉
雷羿 LexChien3 小时前
从 Prompt 管理到人格稳定:探索 Cursor AI 编辑器如何赋能 Prompt 工程与人格风格设计(上)
人工智能·python·llm·编辑器·prompt