pytorch笔记:named_parameters

  • named_parameters 是 PyTorch 中一个非常有用的函数,用于访问模型中所有定义的参数及其对应的名称。
  • 它是 torch.nn.Module 类的方法之一,返回一个生成器,生成 (name, parameter) 对,name 是参数的名称,parameter 是对应的参数张量。

1 举例

1.0 创建模型

python 复制代码
import torch
import torch.nn as nn

# 定义一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 64, 5)
        self.fc1 = nn.Linear(64 * 4 * 4, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = torch.relu(self.conv1(x))
        x = torch.relu(self.conv2(x))
        x = x.view(-1, 64 * 4 * 4)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型
model_tst = SimpleModel()

1.1 应用1:打印模型的所有参数及其名称

python 复制代码
for name, param in model_tst.named_parameters():
    print(name, param.shape)

'''
conv1.weight torch.Size([20, 1, 5, 5])
conv1.bias torch.Size([20])
conv2.weight torch.Size([64, 20, 5, 5])
conv2.bias torch.Size([64])
fc1.weight torch.Size([500, 1024])
fc1.bias torch.Size([500])
fc2.weight torch.Size([10, 500])
fc2.bias torch.Size([10])
conv1.weight torch.Size([20, 1, 5, 5])
conv1.bias torch.Size([20])
conv2.weight torch.Size([64, 20, 5, 5])
conv2.bias torch.Size([64])
fc1.weight torch.Size([500, 1024])
fc1.bias torch.Size([500])
fc2.weight torch.Size([10, 500])
fc2.bias torch.Size([10])
'''

1.2 应用2:冻结特定层的参数

假设我们只想训练全连接层,而冻结卷积层的参数:

python 复制代码
for name, param in model_tst.named_parameters():
    if 'conv' in name:
        param.requires_grad = False

1.3 应用3:自定义优化器参数

可以使用 named_parameters 创建自定义的参数组,以便对不同的参数组应用不同的学习率:

python 复制代码
optimizer = torch.optim.SGD([
    {'params': [param for name, param in model_tst.named_parameters() if 'conv' in name], 'lr': 0.01},
    {'params': [param for name, param in model_tst.named_parameters() if 'fc' in name], 'lr': 0.1}
], momentum=0.9)
相关推荐
青松@FasterAI5 分钟前
【程序员 NLP 入门】词嵌入 - 上下文中的窗口大小是什么意思? (★小白必会版★)
人工智能·自然语言处理
AIGC大时代20 分钟前
高效使用DeepSeek对“情境+ 对象 +问题“型课题进行开题!
数据库·人工智能·算法·aigc·智能写作·deepseek
硅谷秋水21 分钟前
GAIA-2:用于自动驾驶的可控多视图生成世界模型
人工智能·机器学习·自动驾驶
偶尔微微一笑33 分钟前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器
深度之眼1 小时前
2025时间序列都有哪些创新点可做——总结篇
人工智能·深度学习·机器学习·时间序列
晓数1 小时前
【硬核干货】JetBrains AI Assistant 干货笔记
人工智能·笔记·jetbrains·ai assistant
jndingxin1 小时前
OpenCV 图形API(60)颜色空间转换-----将图像从 YUV 色彩空间转换为 RGB 色彩空间函数YUV2RGB()
人工智能·opencv·计算机视觉
我的golang之路果然有问题1 小时前
速成GO访问sql,个人笔记
经验分享·笔记·后端·sql·golang·go·database
lwewan1 小时前
26考研——存储系统(3)
c语言·笔记·考研
Sherlock Ma1 小时前
PDFMathTranslate:基于LLM的PDF文档翻译及双语对照的工具【使用教程】
人工智能·pytorch·语言模型·pdf·大模型·机器翻译·deepseek