pytorch笔记:named_parameters

  • named_parameters 是 PyTorch 中一个非常有用的函数,用于访问模型中所有定义的参数及其对应的名称。
  • 它是 torch.nn.Module 类的方法之一,返回一个生成器,生成 (name, parameter) 对,name 是参数的名称,parameter 是对应的参数张量。

1 举例

1.0 创建模型

python 复制代码
import torch
import torch.nn as nn

# 定义一个简单的模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 64, 5)
        self.fc1 = nn.Linear(64 * 4 * 4, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = torch.relu(self.conv1(x))
        x = torch.relu(self.conv2(x))
        x = x.view(-1, 64 * 4 * 4)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型
model_tst = SimpleModel()

1.1 应用1:打印模型的所有参数及其名称

python 复制代码
for name, param in model_tst.named_parameters():
    print(name, param.shape)

'''
conv1.weight torch.Size([20, 1, 5, 5])
conv1.bias torch.Size([20])
conv2.weight torch.Size([64, 20, 5, 5])
conv2.bias torch.Size([64])
fc1.weight torch.Size([500, 1024])
fc1.bias torch.Size([500])
fc2.weight torch.Size([10, 500])
fc2.bias torch.Size([10])
conv1.weight torch.Size([20, 1, 5, 5])
conv1.bias torch.Size([20])
conv2.weight torch.Size([64, 20, 5, 5])
conv2.bias torch.Size([64])
fc1.weight torch.Size([500, 1024])
fc1.bias torch.Size([500])
fc2.weight torch.Size([10, 500])
fc2.bias torch.Size([10])
'''

1.2 应用2:冻结特定层的参数

假设我们只想训练全连接层,而冻结卷积层的参数:

python 复制代码
for name, param in model_tst.named_parameters():
    if 'conv' in name:
        param.requires_grad = False

1.3 应用3:自定义优化器参数

可以使用 named_parameters 创建自定义的参数组,以便对不同的参数组应用不同的学习率:

python 复制代码
optimizer = torch.optim.SGD([
    {'params': [param for name, param in model_tst.named_parameters() if 'conv' in name], 'lr': 0.01},
    {'params': [param for name, param in model_tst.named_parameters() if 'fc' in name], 'lr': 0.1}
], momentum=0.9)
相关推荐
华奥系科技1 小时前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE1 小时前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***25111 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint2 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志2 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly2 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
px不是xp2 小时前
山东大学算法设计与分析复习笔记
笔记·算法·贪心算法·动态规划·图搜索算法
zzlyx992 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网
说私域3 小时前
定制开发开源AI智能名片驱动下的海报工厂S2B2C商城小程序运营策略——基于社群口碑传播与子市场细分的实证研究
人工智能·小程序·开源·零售
echo haha3 小时前
第7章 :面向对象
笔记