LeetCode 2741.特别的排列:状压DP

【LetMeFly】2741.特别的排列:状压DP

力扣题目链接:https://leetcode.cn/problems/special-permutations/

给你一个下标从 0 开始的整数数组 nums ,它包含 n互不相同 的正整数。如果 nums 的一个排列满足以下条件,我们称它是一个特别的排列:

  • 对于 0 <= i < n - 1 的下标 i ,要么 nums[i] % nums[i+1] == 0 ,要么 nums[i+1] % nums[i] == 0

请你返回特别排列的总数目,由于答案可能很大,请将它对10^9^+ 7 取余 后返回。

示例 1:

复制代码
输入:nums = [2,3,6]
输出:2
解释:[3,6,2] 和 [2,6,3] 是 nums 两个特别的排列。

示例 2:

复制代码
输入:nums = [1,4,3]
输出:2
解释:[3,1,4] 和 [4,1,3] 是 nums 两个特别的排列。

提示:

  • 2 <= nums.length <= 14
  • 1 <= nums[i] <= 10^9^

解题方法:状态压缩的动态规划

需要明白的是,若要看 "在特别排列[a, b, c]的基础上添加元素d生成的[a, b, c, d]"是否为特别排列,只需要判断cd是否能整除或被整除即可。

因此,对于一个特别排列,我们只关心这个排列的最后一个数字 以及这个排列中已经有了哪些数字

对于"这个排列中已经有了哪些数字",我们可以使用"一个整数二进制下的低 n n n位"来表示。

因此,我们可以定义一个DP数组,dp[state][last]表示排列中出现的数字们为state,排列最后一个数字为last时的"特别排列"数。

这个数是怎么得到的呢?假设prev在当前排列中(state & (1 << prev) ≠ 0)且prevlast是倍数关系,那么这个排列可以由"这个排列移除last的最后一个数为prev的排列"拼接上last得到。

因此有状态转移方程: d p [ s t a t e ] [ l a s t ] = ∑ p r e v ∈ s t a t e d p [ s t a t e − ( 1 < < l a s t ) ] [ p r e v ] dp[state][last] = \sum_{prev\in state} dp[state - (1 << last)][prev] dp[state][last]=∑prev∈statedp[state−(1<<last)][prev]。

  • 时间复杂度 O ( 2 n n 2 ) O(2^nn^2) O(2nn2)
  • 空间复杂度 O ( 2 n n ) O(2^nn) O(2nn)

AC代码

C++
cpp 复制代码
const static long long MOD = 1e9 + 7;

class Solution {
public:
    int specialPerm(vector<int>& nums) {
        int n = nums.size();
        vector<vector<long long>> dp(1 << n, vector<long long>(n, 0));
        for (int i = 0; i < n; i++) {
            dp[1 << i][i] = 1;
        }
        for (int state = 0; state < (1 << n); state++) {
            for (int prev = 0; prev < n; prev++) {  // 上一位
                for (int last = 0; last < n; last++) {  // 最后一位
                    if ((state & (1 << last)) && (state & (1 << prev)) && last != prev && (nums[last] % nums[prev] == 0 || nums[prev] % nums[last] == 0)) {
                        dp[state][last] = (dp[state][last] + dp[state ^ (1 << last)][prev]) % MOD;
                    }
                }
            }
        }
        long long ans = 0;
        for (int last = 0; last < n; last++) {
            ans = (ans + dp[(1 << n) - 1][last]) % MOD;
        }
        return ans;
    }
};
Python

附上一个Python超时版本。不想提前判断剪枝优化了。。。

python 复制代码
from typing import List

MOD = 1_000_000_007

class Solution:
    def specialPerm(self, nums: List[int]) -> int:
        n = len(nums)
        dp = [[0 for _ in range(n)] for __ in range(1 << n)]
        for i in range(n):
            dp[1 << i][i] = 1
        for state in range(1 << n):
            for last in range(n):
                for prev in range(n):
                    if (state & (1 << last)) and (state & (1 << prev)) and (nums[prev] % nums[last] == 0 or nums[last] % nums[prev] == 0):
                        dp[state][last] = (dp[state][last] + dp[state ^ (1 << last)][prev]) % MOD
        ans = 0
        for i in range(n):
            ans = (ans + dp[(1 << n) - 1][i]) % MOD
        return ans


if __name__ == '__main__':
    print(Solution.specialPerm('', [838335396, 241654240, 937115884, 795934157, 907282921, 71642053, 242720010, 16417709, 706807579, 752842522, 162230770, 425078819, 793563691, 522087056]))

同步发文于CSDN和我的个人博客,原创不易,转载经作者同意后请附上原文链接哦~

Tisfy:https://letmefly.blog.csdn.net/article/details/140000372

相关推荐
捕鲸叉几秒前
创建线程时传递参数给线程
开发语言·c++·算法
A charmer5 分钟前
【C++】vector 类深度解析:探索动态数组的奥秘
开发语言·c++·算法
wheeldown34 分钟前
【数据结构】选择排序
数据结构·算法·排序算法
观音山保我别报错2 小时前
C语言扫雷小游戏
c语言·开发语言·算法
TangKenny3 小时前
计算网络信号
java·算法·华为
景鹤3 小时前
【算法】递归+深搜:814.二叉树剪枝
算法
iiFrankie3 小时前
SCNU习题 总结与复习
算法
Dola_Pan4 小时前
C++算法和竞赛:哈希算法、动态规划DP算法、贪心算法、博弈算法
c++·算法·哈希算法
小林熬夜学编程4 小时前
【Linux系统编程】第四十一弹---线程深度解析:从地址空间到多线程实践
linux·c语言·开发语言·c++·算法
阿洵Rain5 小时前
【C++】哈希
数据结构·c++·算法·list·哈希算法