CNN神经网络调参技巧

一、基本网络结构

1.若干块,每块:卷积+BN+激活+池化

2.若干块,每块:卷积+激活+Dropout

3.若干块,每块:fc+激活+Dropout

二、技巧

  1. 损失曲线
  • 常见曲线是先快速下降后趋于平缓,如果线性下降,说明学习率可能过低
  • 曲线震荡剧烈不平滑,可能是由于batchsize过小导致
  • 训练损失正常下降,验证损失先下降后上升,说明过拟合,可以调整dropout等解决
  • 损失最低点不代表模型性能最佳点

2.调参

  • 优先使用大的网络结构训练出过拟合效果
  • 第一层卷积核通道数应当较大,因为浅层特征较为重要
  • 主要还是根据损失函数进行调整
  • batchsize大容易过拟合,先用大batchsize,再用dropout解决过拟合

3.其他

  • 使用same卷积,更方便,不用每次计算卷积后的输出尺寸
相关推荐
CHU72903515 分钟前
在线教学课堂APP前端功能:搭建高效线上教学生态
前端·人工智能·小程序·php
szcsun521 分钟前
机器学习(一)
人工智能·机器学习
sonadorje27 分钟前
矩阵的“内积”和“乘法”
人工智能·机器学习·矩阵
lixin5565561 小时前
基于迁移学习的图像风格增强器
java·人工智能·pytorch·python·深度学习·语言模型
byzh_rc1 小时前
[数学建模从入门到入土] 评价模型
网络·人工智能·深度学习·数学建模·回归·ar
阡陌..1 小时前
浅谈SAR图像处理---形态学滤波
图像处理·人工智能·python
renhongxia11 小时前
多机器人环境监测中的异质性,用于解决时间冲突任务
人工智能·信息可视化·语言模型·自然语言处理·数据分析·机器人
源于花海2 小时前
迁移学习的第三类方法:子空间学习(2)——流形学习
人工智能·机器学习·迁移学习·流形学习·子空间学习
方安乐2 小时前
杂记:文档解析器之MinerU
人工智能
AI猫站长2 小时前
快讯|星海图、众擎机器人、魔法原子释放IPO信号,2026年或成上市大年
人工智能·机器人·具身智能·灵心巧手·上市·星海图·众擎机器人