CNN神经网络调参技巧

一、基本网络结构

1.若干块,每块:卷积+BN+激活+池化

2.若干块,每块:卷积+激活+Dropout

3.若干块,每块:fc+激活+Dropout

二、技巧

  1. 损失曲线
  • 常见曲线是先快速下降后趋于平缓,如果线性下降,说明学习率可能过低
  • 曲线震荡剧烈不平滑,可能是由于batchsize过小导致
  • 训练损失正常下降,验证损失先下降后上升,说明过拟合,可以调整dropout等解决
  • 损失最低点不代表模型性能最佳点

2.调参

  • 优先使用大的网络结构训练出过拟合效果
  • 第一层卷积核通道数应当较大,因为浅层特征较为重要
  • 主要还是根据损失函数进行调整
  • batchsize大容易过拟合,先用大batchsize,再用dropout解决过拟合

3.其他

  • 使用same卷积,更方便,不用每次计算卷积后的输出尺寸
相关推荐
袁庭新7 分钟前
使用扣子+飞书+DeepSeek搭建批量提取公众号文章内容并改写的智能体
人工智能·aigc·coze
黑心萝卜三条杠21 分钟前
解码微生物适应性的关键:基因组序列与栖息地预测的深度关联
人工智能
黑心萝卜三条杠44 分钟前
Everywhere Attack:通过多目标植入提升对抗样本的目标迁移性
人工智能
carpell1 小时前
【语义分割专栏】3:Segnet原理篇
人工智能·python·深度学习·计算机视觉·语义分割
ahead~1 小时前
【大模型原理与技术-毛玉仁】第五章 模型编辑
人工智能·深度学习·机器学习
迪娜学姐1 小时前
GenSpark vs Manus实测对比:文献综述与学术PPT,哪家强?
论文阅读·人工智能·prompt·powerpoint·论文笔记
TDengine (老段)1 小时前
TDengine 在电力行业如何使用 AI ?
大数据·数据库·人工智能·时序数据库·tdengine·涛思数据
猎板PCB厚铜专家大族1 小时前
高频 PCB 技术发展趋势与应用解析
人工智能·算法·设计规范
l0sgAi2 小时前
SpringBoot整合LangChain4j实现RAG (检索增强生成)
人工智能
祐言QAQ2 小时前
浅谈边缘计算
人工智能·边缘计算