CNN神经网络调参技巧

一、基本网络结构

1.若干块,每块:卷积+BN+激活+池化

2.若干块,每块:卷积+激活+Dropout

3.若干块,每块:fc+激活+Dropout

二、技巧

  1. 损失曲线
  • 常见曲线是先快速下降后趋于平缓,如果线性下降,说明学习率可能过低
  • 曲线震荡剧烈不平滑,可能是由于batchsize过小导致
  • 训练损失正常下降,验证损失先下降后上升,说明过拟合,可以调整dropout等解决
  • 损失最低点不代表模型性能最佳点

2.调参

  • 优先使用大的网络结构训练出过拟合效果
  • 第一层卷积核通道数应当较大,因为浅层特征较为重要
  • 主要还是根据损失函数进行调整
  • batchsize大容易过拟合,先用大batchsize,再用dropout解决过拟合

3.其他

  • 使用same卷积,更方便,不用每次计算卷积后的输出尺寸
相关推荐
LaughingZhu16 分钟前
Product Hunt 每日热榜 | 2025-09-07
人工智能·经验分享·搜索引擎·产品运营
星马梦缘19 分钟前
Matlab机器人工具箱使用2 DH建模与加载模型
人工智能·matlab·机器人·仿真·dh参数法·改进dh参数法
居然JuRan36 分钟前
从零开始学大模型之预训练语言模型
人工智能
martinzh1 小时前
向量化与嵌入模型:RAG系统背后的隐形英雄
人工智能
新智元1 小时前
学哲学没出路?不好意思,现在哲学就业碾压 CS!
人工智能·openai
AI码上来1 小时前
当小智 AI 遇上数字人,我用 WebRTC 打造实时音视频应用
人工智能·webrtc·实时音视频
黎燃1 小时前
智能库存管理的需求预测模型:从业务痛点到落地代码的完整实践
人工智能
机器之心1 小时前
DPad: 扩散大语言模型的中庸之道,杜克大学陈怡然团队免训推理加速61倍
人工智能·openai
一车小面包2 小时前
人工智能中的线性代数总结--简单篇
人工智能·numpy
大模型真好玩2 小时前
深入浅出LangGraph AI Agent智能体开发教程(四)—LangGraph全生态开发工具使用与智能体部署
人工智能·python·mcp