CNN神经网络调参技巧

一、基本网络结构

1.若干块,每块:卷积+BN+激活+池化

2.若干块,每块:卷积+激活+Dropout

3.若干块,每块:fc+激活+Dropout

二、技巧

  1. 损失曲线
  • 常见曲线是先快速下降后趋于平缓,如果线性下降,说明学习率可能过低
  • 曲线震荡剧烈不平滑,可能是由于batchsize过小导致
  • 训练损失正常下降,验证损失先下降后上升,说明过拟合,可以调整dropout等解决
  • 损失最低点不代表模型性能最佳点

2.调参

  • 优先使用大的网络结构训练出过拟合效果
  • 第一层卷积核通道数应当较大,因为浅层特征较为重要
  • 主要还是根据损失函数进行调整
  • batchsize大容易过拟合,先用大batchsize,再用dropout解决过拟合

3.其他

  • 使用same卷积,更方便,不用每次计算卷积后的输出尺寸
相关推荐
Coder个人博客5 分钟前
Apollo Canbus 底盘通信模块接口调用流程图与源码分析
人工智能·自动驾驶·apollo
孟祥_成都5 分钟前
前端和小白都能看懂的 LangChain Model 模块核心实战指南
前端·人工智能
玄微云9 分钟前
玄微科技:大健康数智化的 4 个 AI 智能体落地要点
大数据·人工智能·科技·软件需求·门店管理
蓝鲨硬科技9 分钟前
黄仁勋“梭哈”的物理AI,正在被中国企业变成现实
人工智能·chatgpt
Coder个人博客9 分钟前
Apollo Prediction 预测模块接口调用流程图与源码分析
人工智能·自动驾驶·apollo
热爱专研AI的学妹12 分钟前
【搭建工作流教程】使用数眼智能 API 搭建 AI 智能体工作流教程(含可视化流程图)
大数据·数据库·人工智能·python·ai·语言模型·流程图
LYFlied17 分钟前
Spec Coding:AI时代前端开发的范式革新
前端·人工智能·工程化·spec coding
2401_8414956418 分钟前
知识工程:人工智能从通用求解到知识驱动的演进基石
人工智能·自然语言处理·知识图谱·语义网络·状态空间·知识工程·自然语言理解
救救孩子把19 分钟前
中文命名实体识别(NER)数据集全面整理
人工智能·机器学习·数据集
西安同步高经理28 分钟前
秒表实现自动化测量助力时频测量行业发展、秒表检定仪、毫秒表测量仪
人工智能·算法