CNN神经网络调参技巧

一、基本网络结构

1.若干块,每块:卷积+BN+激活+池化

2.若干块,每块:卷积+激活+Dropout

3.若干块,每块:fc+激活+Dropout

二、技巧

  1. 损失曲线
  • 常见曲线是先快速下降后趋于平缓,如果线性下降,说明学习率可能过低
  • 曲线震荡剧烈不平滑,可能是由于batchsize过小导致
  • 训练损失正常下降,验证损失先下降后上升,说明过拟合,可以调整dropout等解决
  • 损失最低点不代表模型性能最佳点

2.调参

  • 优先使用大的网络结构训练出过拟合效果
  • 第一层卷积核通道数应当较大,因为浅层特征较为重要
  • 主要还是根据损失函数进行调整
  • batchsize大容易过拟合,先用大batchsize,再用dropout解决过拟合

3.其他

  • 使用same卷积,更方便,不用每次计算卷积后的输出尺寸
相关推荐
_爱明1 分钟前
查看模型参数量
人工智能·pytorch·python
Deepoch1 分钟前
模块化智能新纪元:Deepoc开发板如何重塑服务机器人产业生态
人工智能·机器人·具身模型·deepoc
. . . . .8 分钟前
ComfyUi
人工智能
WZGL123012 分钟前
从个体需求到整体守护,科技助力老人安全安心
大数据·人工智能·科技·安全·智能家居
智算菩萨13 分钟前
【Python基础】AI的“重复学习”:循环语句(for, while)的奥秘
人工智能·python·学习
FserSuN13 分钟前
AI产品:Google Code Wiki
人工智能
周名彥24 分钟前
### 基于CP++的天元算盘系统“长度-长“定义及工程实现方案
人工智能·去中心化·知识图谱·量子计算·agi
AMiner:AI科研助手24 分钟前
AI如何重新定义研究?以AMiner沉思为例讲透Deep Research
人工智能·glm·智谱·深度调研
数字孪生家族27 分钟前
以视频孪生融合空间智能,打造智慧城市领域物联感知与 AI 应用标杆案例
人工智能·智慧城市·视频孪生智慧交通·空间智能应用·视频孪生能源·数字乡村建设
Deepoch29 分钟前
智能清洁新纪元:移动式收垃圾机器人如何重塑城市环卫服务体系
人工智能·机器人·具身模型·deepoc·环卫机器人