【Python机器学习】模型评估与改进——分层k折交叉验证

在k折分层验证中,将数据集划分为k折时,从数据的前k分之一开始划分,这可能并不总是一个好主意,例如iris数据集中:

python 复制代码
from sklearn.datasets import load_iris

iris=load_iris()
print('Iris labels:\n:{}'.format(iris.target))

可以看到,数据的前1/3是类别0,中间1/3是类别1,后1/3是类别2。如果在这个数据集上进行3折交叉验证,第一折将只包含类别0,所以在数据的第一次划分中,测试集将只包含类别0,而训练集只包含类别1和2。由于在3次划分中训练集和测试集中的类别都不一样,所以这个数据集上的3折交叉验证精度为0,这没什么用,因为我们在iris上可以得到比0%好得多的精度。

因为简单的k折策略在这里失效了,所以scikit-learn在分类问题中不适用这种策略,而是使用分层k折交叉验证。

在分层交叉验证中,我们划分数据,使每个折中类别之间的比例与整个数据集中的比例相同,比如:

python 复制代码
mglearn.plots.plot_stratified_cross_validation()
plt.show()

举个例子,如果按照90%的样本属于类别A而10%的样本属于类别B,那么分层交叉验证可以确保,在每个折中90%的样本属于类别A而10%的样本属于类别B。

使用分层k折交叉验证而不是k折交叉验证来评估一个分类器,这通常是一个好主意,因为它可以对泛化性能做出更可靠的评估。在只有10%的样本属于类别B的情况下,如果使用标准k折交叉验证,很可能某个折中只包含类别A的样本。利用这个折作为测试集的话,无法给出分类器整体性能的信息。

对于回归问题,scikit-learn默认使用标准k折交叉验证。也可以尝试让每个折表示回归目标的不同取值,但这并不是一种常用的策略。

相关推荐
张拭心3 小时前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩3 小时前
大模型 MoE,你明白了么?
人工智能·llm
这个人懒得名字都没写4 小时前
Python包管理新纪元:uv
python·conda·pip·uv
有泽改之_4 小时前
leetcode146、OrderedDict与lru_cache
python·leetcode·链表
im_AMBER4 小时前
Leetcode 74 K 和数对的最大数目
数据结构·笔记·学习·算法·leetcode
DBA小马哥4 小时前
Oracle迁移实战:如何轻松跨越异构数据库的学习与技术壁垒
数据库·学习·oracle·信创·国产化平替
Blossom.1185 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
是毛毛吧5 小时前
边打游戏边学Python的5个开源项目
python·开源·github·开源软件·pygame
t198751285 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技5 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能