【Python机器学习】模型评估与改进——分层k折交叉验证

在k折分层验证中,将数据集划分为k折时,从数据的前k分之一开始划分,这可能并不总是一个好主意,例如iris数据集中:

python 复制代码
from sklearn.datasets import load_iris

iris=load_iris()
print('Iris labels:\n:{}'.format(iris.target))

可以看到,数据的前1/3是类别0,中间1/3是类别1,后1/3是类别2。如果在这个数据集上进行3折交叉验证,第一折将只包含类别0,所以在数据的第一次划分中,测试集将只包含类别0,而训练集只包含类别1和2。由于在3次划分中训练集和测试集中的类别都不一样,所以这个数据集上的3折交叉验证精度为0,这没什么用,因为我们在iris上可以得到比0%好得多的精度。

因为简单的k折策略在这里失效了,所以scikit-learn在分类问题中不适用这种策略,而是使用分层k折交叉验证。

在分层交叉验证中,我们划分数据,使每个折中类别之间的比例与整个数据集中的比例相同,比如:

python 复制代码
mglearn.plots.plot_stratified_cross_validation()
plt.show()

举个例子,如果按照90%的样本属于类别A而10%的样本属于类别B,那么分层交叉验证可以确保,在每个折中90%的样本属于类别A而10%的样本属于类别B。

使用分层k折交叉验证而不是k折交叉验证来评估一个分类器,这通常是一个好主意,因为它可以对泛化性能做出更可靠的评估。在只有10%的样本属于类别B的情况下,如果使用标准k折交叉验证,很可能某个折中只包含类别A的样本。利用这个折作为测试集的话,无法给出分类器整体性能的信息。

对于回归问题,scikit-learn默认使用标准k折交叉验证。也可以尝试让每个折表示回归目标的不同取值,但这并不是一种常用的策略。

相关推荐
IT_陈寒32 分钟前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
数据智能老司机2 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
逛逛GitHub2 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心2 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
数据智能老司机3 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机3 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机3 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
CoovallyAIHub3 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
c8i3 小时前
drf初步梳理
python·django
每日AI新事件3 小时前
python的异步函数
python