【Python机器学习】模型评估与改进——分层k折交叉验证

在k折分层验证中,将数据集划分为k折时,从数据的前k分之一开始划分,这可能并不总是一个好主意,例如iris数据集中:

python 复制代码
from sklearn.datasets import load_iris

iris=load_iris()
print('Iris labels:\n:{}'.format(iris.target))

可以看到,数据的前1/3是类别0,中间1/3是类别1,后1/3是类别2。如果在这个数据集上进行3折交叉验证,第一折将只包含类别0,所以在数据的第一次划分中,测试集将只包含类别0,而训练集只包含类别1和2。由于在3次划分中训练集和测试集中的类别都不一样,所以这个数据集上的3折交叉验证精度为0,这没什么用,因为我们在iris上可以得到比0%好得多的精度。

因为简单的k折策略在这里失效了,所以scikit-learn在分类问题中不适用这种策略,而是使用分层k折交叉验证。

在分层交叉验证中,我们划分数据,使每个折中类别之间的比例与整个数据集中的比例相同,比如:

python 复制代码
mglearn.plots.plot_stratified_cross_validation()
plt.show()

举个例子,如果按照90%的样本属于类别A而10%的样本属于类别B,那么分层交叉验证可以确保,在每个折中90%的样本属于类别A而10%的样本属于类别B。

使用分层k折交叉验证而不是k折交叉验证来评估一个分类器,这通常是一个好主意,因为它可以对泛化性能做出更可靠的评估。在只有10%的样本属于类别B的情况下,如果使用标准k折交叉验证,很可能某个折中只包含类别A的样本。利用这个折作为测试集的话,无法给出分类器整体性能的信息。

对于回归问题,scikit-learn默认使用标准k折交叉验证。也可以尝试让每个折表示回归目标的不同取值,但这并不是一种常用的策略。

相关推荐
Awesome Baron1 分钟前
《Learning Langchain》阅读笔记8-RAG(4)在vector store中存储embbdings
python·jupyter·chatgpt·langchain·llm
张申傲1 分钟前
多模态(3):实战 GPT-4o 视频理解
人工智能·chatgpt·aigc·多模态
阡之尘埃3 分钟前
Python数据分析案例73——基于多种异常值监测算法探查内幕交易信息
人工智能·python·机器学习·数据分析·异常检测·无监督学习
Yhame.9 分钟前
【使用层次序列构建二叉树(数据结构C)】
c语言·开发语言·数据结构
猫先生Mr.Mao11 分钟前
2025年3月AGI技术月评|技术突破重构数字世界底层逻辑
人工智能·aigc·大语言模型·agi·多模态·行业洞察
言之。15 分钟前
【Go语言】RPC 使用指南(初学者版)
开发语言·rpc·golang
丰锋ff23 分钟前
考研英一学习笔记
笔记·学习·考研
睿创咨询29 分钟前
科技与商业动态简报
人工智能·科技·ipd·商业
科技在线29 分钟前
科技赋能建筑新未来:中建海龙模块化建筑产品入选中国建筑首批产业化推广产品
大数据·人工智能
雾月5533 分钟前
LeetCode 1292 元素和小于等于阈值的正方形的最大边长
java·数据结构·算法·leetcode·职场和发展