【Python机器学习】模型评估与改进——分层k折交叉验证

在k折分层验证中,将数据集划分为k折时,从数据的前k分之一开始划分,这可能并不总是一个好主意,例如iris数据集中:

python 复制代码
from sklearn.datasets import load_iris

iris=load_iris()
print('Iris labels:\n:{}'.format(iris.target))

可以看到,数据的前1/3是类别0,中间1/3是类别1,后1/3是类别2。如果在这个数据集上进行3折交叉验证,第一折将只包含类别0,所以在数据的第一次划分中,测试集将只包含类别0,而训练集只包含类别1和2。由于在3次划分中训练集和测试集中的类别都不一样,所以这个数据集上的3折交叉验证精度为0,这没什么用,因为我们在iris上可以得到比0%好得多的精度。

因为简单的k折策略在这里失效了,所以scikit-learn在分类问题中不适用这种策略,而是使用分层k折交叉验证。

在分层交叉验证中,我们划分数据,使每个折中类别之间的比例与整个数据集中的比例相同,比如:

python 复制代码
mglearn.plots.plot_stratified_cross_validation()
plt.show()

举个例子,如果按照90%的样本属于类别A而10%的样本属于类别B,那么分层交叉验证可以确保,在每个折中90%的样本属于类别A而10%的样本属于类别B。

使用分层k折交叉验证而不是k折交叉验证来评估一个分类器,这通常是一个好主意,因为它可以对泛化性能做出更可靠的评估。在只有10%的样本属于类别B的情况下,如果使用标准k折交叉验证,很可能某个折中只包含类别A的样本。利用这个折作为测试集的话,无法给出分类器整体性能的信息。

对于回归问题,scikit-learn默认使用标准k折交叉验证。也可以尝试让每个折表示回归目标的不同取值,但这并不是一种常用的策略。

相关推荐
半盏茶香1 分钟前
扬帆数据结构算法之雅舟航程,漫步C++幽谷——LeetCode刷题之移除链表元素、反转链表、找中间节点、合并有序链表、链表的回文结构
数据结构·c++·算法
加油,旭杏4 分钟前
【go语言】变量和常量
服务器·开发语言·golang
行路见知4 分钟前
3.3 Go 返回值详解
开发语言·golang
xcLeigh8 分钟前
WPF实战案例 | C# WPF实现大学选课系统
开发语言·c#·wpf
孤独且没人爱的纸鹤9 分钟前
【机器学习】深入无监督学习分裂型层次聚类的原理、算法结构与数学基础全方位解读,深度揭示其如何在数据空间中构建层次化聚类结构
人工智能·python·深度学习·机器学习·支持向量机·ai·聚类
viperrrrrrrrrr79 分钟前
大数据学习(40)- Flink执行流
大数据·学习·flink
后端研发Marion11 分钟前
【AI编辑器】字节跳动推出AI IDE——Trae,专为中文开发者深度定制
人工智能·ai编程·ai程序员·trae·ai编辑器
l1x1n012 分钟前
No.35 笔记 | Python学习之旅:基础语法与实践作业总结
笔记·python·学习
NoneCoder18 分钟前
JavaScript系列(38)-- WebRTC技术详解
开发语言·javascript·webrtc
CodeJourney.21 分钟前
小型分布式发电项目优化设计方案
算法