【Python机器学习】模型评估与改进——分层k折交叉验证

在k折分层验证中,将数据集划分为k折时,从数据的前k分之一开始划分,这可能并不总是一个好主意,例如iris数据集中:

python 复制代码
from sklearn.datasets import load_iris

iris=load_iris()
print('Iris labels:\n:{}'.format(iris.target))

可以看到,数据的前1/3是类别0,中间1/3是类别1,后1/3是类别2。如果在这个数据集上进行3折交叉验证,第一折将只包含类别0,所以在数据的第一次划分中,测试集将只包含类别0,而训练集只包含类别1和2。由于在3次划分中训练集和测试集中的类别都不一样,所以这个数据集上的3折交叉验证精度为0,这没什么用,因为我们在iris上可以得到比0%好得多的精度。

因为简单的k折策略在这里失效了,所以scikit-learn在分类问题中不适用这种策略,而是使用分层k折交叉验证。

在分层交叉验证中,我们划分数据,使每个折中类别之间的比例与整个数据集中的比例相同,比如:

python 复制代码
mglearn.plots.plot_stratified_cross_validation()
plt.show()

举个例子,如果按照90%的样本属于类别A而10%的样本属于类别B,那么分层交叉验证可以确保,在每个折中90%的样本属于类别A而10%的样本属于类别B。

使用分层k折交叉验证而不是k折交叉验证来评估一个分类器,这通常是一个好主意,因为它可以对泛化性能做出更可靠的评估。在只有10%的样本属于类别B的情况下,如果使用标准k折交叉验证,很可能某个折中只包含类别A的样本。利用这个折作为测试集的话,无法给出分类器整体性能的信息。

对于回归问题,scikit-learn默认使用标准k折交叉验证。也可以尝试让每个折表示回归目标的不同取值,但这并不是一种常用的策略。

相关推荐
CNRio几秒前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll5 分钟前
深度学习——CNN入门
人工智能·深度学习·cnn
u***32431 小时前
使用python进行PostgreSQL 数据库连接
数据库·python·postgresql
小奶包他干奶奶3 小时前
Webpack学习——Loader(文件转换器)
前端·学习·webpack
小奶包他干奶奶3 小时前
Webpack学习——原理理解
学习·webpack·devops
mit6.8244 小时前
bfs|栈
算法
青瓷程序设计4 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
励志成为美貌才华为一体的女子4 小时前
强化学习PPO和GRPO逻辑学习
学习
tobebetter95274 小时前
How to manage python versions on windows
开发语言·windows·python
F_D_Z4 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib