每日Attention学习7——Frequency-Perception Module

模块出处

[link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection


模块名称

Frequency-Perception Module (FPM)


模块作用

获取频域信息,更好识别伪装对象


模块结构
模块代码
python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F


class FirstOctaveConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
                 groups=1, bias=False):
        super(FirstOctaveConv, self).__init__()
        self.stride = stride
        kernel_size = kernel_size[0]
        self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        self.h2l = torch.nn.Conv2d(in_channels, int(alpha * in_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.h2h = torch.nn.Conv2d(in_channels, in_channels - int(alpha * in_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)

    def forward(self, x):
        if self.stride ==2:
            x = self.h2g_pool(x)
        X_h2l = self.h2g_pool(x)
        X_h = x
        X_h = self.h2h(X_h)
        X_l = self.h2l(X_h2l)
        return X_h, X_l
    

class OctaveConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
                 groups=1, bias=False):
        super(OctaveConv, self).__init__()
        kernel_size = kernel_size[0]
        self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')
        self.stride = stride
        self.l2l = torch.nn.Conv2d(int(alpha * in_channels), int(alpha * out_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.l2h = torch.nn.Conv2d(int(alpha * in_channels), out_channels - int(alpha * out_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.h2l = torch.nn.Conv2d(in_channels - int(alpha * in_channels), int(alpha * out_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.h2h = torch.nn.Conv2d(in_channels - int(alpha * in_channels),
                                   out_channels - int(alpha * out_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)

    def forward(self, x):
        X_h, X_l = x
        if self.stride == 2:
            X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)
        X_h2l = self.h2g_pool(X_h)
        X_h2h = self.h2h(X_h)
        X_l2h = self.l2h(X_l)
        X_l2l = self.l2l(X_l)
        X_h2l = self.h2l(X_h2l)
        X_l2h = F.interpolate(X_l2h, (int(X_h2h.size()[2]),int(X_h2h.size()[3])), mode='bilinear')
        X_h = X_l2h + X_h2h
        X_l = X_h2l + X_l2l
        return X_h, X_l


class LastOctaveConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
                 groups=1, bias=False):
        super(LastOctaveConv, self).__init__()
        self.stride = stride
        kernel_size = kernel_size[0]
        self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        self.l2h = torch.nn.Conv2d(int(alpha * out_channels), out_channels,
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.h2h = torch.nn.Conv2d(out_channels - int(alpha * out_channels),
                                   out_channels,
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')
    def forward(self, x):
        X_h, X_l = x
        if self.stride == 2:
            X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)
        X_h2h = self.h2h(X_h) 
        X_l2h = self.l2h(X_l) 
        X_l2h = F.interpolate(X_l2h, (int(X_h2h.size()[2]), int(X_h2h.size()[3])), mode='bilinear')
        X_h = X_h2h + X_l2h 
        return X_h
    

class FPM(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=(3, 3)):
        super(FPM, self).__init__()
        self.fir = FirstOctaveConv(in_channels, out_channels, kernel_size)
        self.mid1 = OctaveConv(in_channels, in_channels, kernel_size)
        self.mid2 = OctaveConv(in_channels, out_channels, kernel_size)
        self.lst = LastOctaveConv(in_channels, out_channels, kernel_size)

    def forward(self, x):
        x_h, x_l = self.fir(x)                  
        x_h_1, x_l_1 = self.mid1((x_h, x_l))     
        x_h_2, x_l_2 = self.mid1((x_h_1, x_l_1)) 
        x_h_5, x_l_5 = self.mid2((x_h_2, x_l_2)) 
        x_ret = self.lst((x_h_5, x_l_5))
        return x_ret
    

if __name__ == '__main__':
    x = torch.randn([3, 256, 16, 16])
    fpm = FPM(in_channels=256, out_channels=64)
    out = fpm(x)
    print(out.shape)  # 3, 64, 16, 16

原文表述

具体来说,我们采用八度卷积以端到端的方式自动感知高频和低频信息,从而实现伪装物体检测的在线学习。八度卷积可以有效避免DCT 引起的块状效应,并利用GPU的计算速度优势。此外,它可以轻松插入任意网络。

相关推荐
m0_6501082436 分钟前
Sparse4D v3:端到端 3D 检测与跟踪的技术突破
论文阅读·自动驾驶·sparse4d v3·端到端3d感知框架·去噪思想·端到端跟踪·纯视觉感知
m0_6501082421 小时前
VADv2:基于概率规划的端到端矢量化自动驾驶
论文阅读·自动驾驶·端到端矢量化·驾驶场景中的不确定性·概率场建模·多模态编码·vadv2
提娜米苏1 天前
[论文笔记] End-to-End Audiovisual Fusion with LSTMs
论文阅读·深度学习·lstm·语音识别·论文笔记·多模态
m0_650108241 天前
DiffusionDrive:面向端到端自动驾驶的截断扩散模型
论文阅读·扩散模型·端到端自动驾驶·阶段扩散策略·高级联扩散解码器·cvpr2025
提娜米苏1 天前
[论文笔记] 基于 LSTM 的端到端视觉语音识别 (End-to-End Visual Speech Recognition with LSTMs)
论文阅读·深度学习·计算机视觉·lstm·语音识别·视觉语音识别
m0_650108241 天前
BEVDet:鸟瞰图视角下的高性能多相机 3D 目标检测
论文阅读·bevdet·bev视角·3d目标检测范式·多任务统一框架·bev语言分割
STLearner1 天前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
youcans_2 天前
【DeepSeek 论文精读】15. DeepSeek-V3.2:开拓开源大型语言模型新前沿
论文阅读·人工智能·语言模型·智能体·deepseek
m0_650108242 天前
Co-MTP:面向自动驾驶的多时间融合协同轨迹预测框架
论文阅读·人工智能·自动驾驶·双时间域融合·突破单车感知局限·帧间轨迹预测·异构图transformer
胆怯的ai萌新2 天前
论文阅读《Audit Games with Multiple Defender Resources》
论文阅读