每日Attention学习7——Frequency-Perception Module

模块出处

[link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection


模块名称

Frequency-Perception Module (FPM)


模块作用

获取频域信息,更好识别伪装对象


模块结构
模块代码
python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F


class FirstOctaveConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
                 groups=1, bias=False):
        super(FirstOctaveConv, self).__init__()
        self.stride = stride
        kernel_size = kernel_size[0]
        self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        self.h2l = torch.nn.Conv2d(in_channels, int(alpha * in_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.h2h = torch.nn.Conv2d(in_channels, in_channels - int(alpha * in_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)

    def forward(self, x):
        if self.stride ==2:
            x = self.h2g_pool(x)
        X_h2l = self.h2g_pool(x)
        X_h = x
        X_h = self.h2h(X_h)
        X_l = self.h2l(X_h2l)
        return X_h, X_l
    

class OctaveConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
                 groups=1, bias=False):
        super(OctaveConv, self).__init__()
        kernel_size = kernel_size[0]
        self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')
        self.stride = stride
        self.l2l = torch.nn.Conv2d(int(alpha * in_channels), int(alpha * out_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.l2h = torch.nn.Conv2d(int(alpha * in_channels), out_channels - int(alpha * out_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.h2l = torch.nn.Conv2d(in_channels - int(alpha * in_channels), int(alpha * out_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.h2h = torch.nn.Conv2d(in_channels - int(alpha * in_channels),
                                   out_channels - int(alpha * out_channels),
                                   kernel_size, 1, padding, dilation, groups, bias)

    def forward(self, x):
        X_h, X_l = x
        if self.stride == 2:
            X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)
        X_h2l = self.h2g_pool(X_h)
        X_h2h = self.h2h(X_h)
        X_l2h = self.l2h(X_l)
        X_l2l = self.l2l(X_l)
        X_h2l = self.h2l(X_h2l)
        X_l2h = F.interpolate(X_l2h, (int(X_h2h.size()[2]),int(X_h2h.size()[3])), mode='bilinear')
        X_h = X_l2h + X_h2h
        X_l = X_h2l + X_l2l
        return X_h, X_l


class LastOctaveConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, alpha=0.5, stride=1, padding=1, dilation=1,
                 groups=1, bias=False):
        super(LastOctaveConv, self).__init__()
        self.stride = stride
        kernel_size = kernel_size[0]
        self.h2g_pool = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
        self.l2h = torch.nn.Conv2d(int(alpha * out_channels), out_channels,
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.h2h = torch.nn.Conv2d(out_channels - int(alpha * out_channels),
                                   out_channels,
                                   kernel_size, 1, padding, dilation, groups, bias)
        self.upsample = torch.nn.Upsample(scale_factor=2, mode='nearest')
    def forward(self, x):
        X_h, X_l = x
        if self.stride == 2:
            X_h, X_l = self.h2g_pool(X_h), self.h2g_pool(X_l)
        X_h2h = self.h2h(X_h) 
        X_l2h = self.l2h(X_l) 
        X_l2h = F.interpolate(X_l2h, (int(X_h2h.size()[2]), int(X_h2h.size()[3])), mode='bilinear')
        X_h = X_h2h + X_l2h 
        return X_h
    

class FPM(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=(3, 3)):
        super(FPM, self).__init__()
        self.fir = FirstOctaveConv(in_channels, out_channels, kernel_size)
        self.mid1 = OctaveConv(in_channels, in_channels, kernel_size)
        self.mid2 = OctaveConv(in_channels, out_channels, kernel_size)
        self.lst = LastOctaveConv(in_channels, out_channels, kernel_size)

    def forward(self, x):
        x_h, x_l = self.fir(x)                  
        x_h_1, x_l_1 = self.mid1((x_h, x_l))     
        x_h_2, x_l_2 = self.mid1((x_h_1, x_l_1)) 
        x_h_5, x_l_5 = self.mid2((x_h_2, x_l_2)) 
        x_ret = self.lst((x_h_5, x_l_5))
        return x_ret
    

if __name__ == '__main__':
    x = torch.randn([3, 256, 16, 16])
    fpm = FPM(in_channels=256, out_channels=64)
    out = fpm(x)
    print(out.shape)  # 3, 64, 16, 16

原文表述

具体来说,我们采用八度卷积以端到端的方式自动感知高频和低频信息,从而实现伪装物体检测的在线学习。八度卷积可以有效避免DCT 引起的块状效应,并利用GPU的计算速度优势。此外,它可以轻松插入任意网络。

相关推荐
有Li8 小时前
关注与优化:用于骨龄评估的交互式关键点定位与颈椎定量分析|文献速递-深度学习人工智能医疗图像
论文阅读·医学生
AustinCyy1 天前
【论文笔记】DOC: Improving Long Story Coherence With Detailed Outline Control
论文阅读·nlp
weixin_443290691 天前
【论文阅读-Part1】PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation
大数据·论文阅读
不解风水4 天前
【论文阅读】一种基于经典机器学习的肌电下肢意图检测方法,用于人机交互系统
论文阅读·人机交互
爱补鱼的猫猫4 天前
17、CryptoMamba论文笔记
论文阅读
大熊背4 天前
《Fast Automatic White Balancing Method by Color Histogram Stretching》论文笔记
论文阅读·白平衡
CV-杨帆5 天前
论文阅读 arxiv 2024 MemGPT: Towards LLMs as Operating Systems
论文阅读
AAA锅包肉批发5 天前
论文阅读:Aircraft Trajectory Prediction Model Based on Improved GRU Structure
论文阅读·深度学习·gru
星夜Zn5 天前
Nature论文-预测和捕捉人类认知的基础模型-用大模型模拟人类认知
论文阅读·人工智能·大语言模型·nature·认知建模·统一认知模型
dundunmm5 天前
【论文阅读】Deep Adversarial Multi-view Clustering Network
论文阅读·人工智能·深度学习·聚类·对抗网络·多视图聚类·深度多视图聚类