算法训练(leetcode)第二十二天 | 491. 非递减子序列、全排列、47. 全排列 II

刷题记录

  • [491. 非递减子序列](#491. 非递减子序列)
  • [46. 全排列](#46. 全排列)
  • [47. 全排列 II](#47. 全排列 II)

491. 非递减子序列

leetcode题目地址

本题对于去重是一个难点,因为题目不允许排序,所以需要加一个笔记数组来判断相同的元素在同一层是否已经使用。使用set、map都可以达到这个目的。

时间复杂度: O ( n ∗ 2 n ) O(n * 2^n) O(n∗2n)
空间复杂度: O ( n ) O(n) O(n)

cpp 复制代码
// c++
class Solution {
public:
    vector<int> cur;
    void backtracking(vector<vector<int>> &result, const vector<int>& nums, int left){
        if(cur.size()>1){
            result.emplace_back(cur);
        }
        // 负责本层的去重
        unordered_set<int> uset;
        for(int i=left; i<nums.size(); i++){
            // 去重
            if(uset.find(nums[i])!=uset.end()) continue;
            if(cur.size()==0 || cur[cur.size()-1] <= nums[i]) {
                cur.emplace_back(nums[i]);
                uset.insert(nums[i]);
                backtracking(result, nums, i+1);
                cur.pop_back();
            }

        }
    }
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        vector<vector<int>> result;
        backtracking(result, nums, 0);
        return result;
    }
};

46. 全排列

leetcode题目地址

全排列无需记录起始位置(每层都是从头开始找未使用过的元素),只需要控制每个元素在每个排列中只使用一次。借助一个额外的数组或map来实现。

时间复杂度: O ( n ! ) O(n!) O(n!)
空间复杂度: O ( n ) O(n) O(n)

cpp 复制代码
// c++
class Solution {
public:
    vector<int> cur;
    unordered_map<int, int> used;
    
    void backtracking(vector<vector<int>>&result, const vector<int>& nums){
        if(cur.size()==nums.size()){
            result.emplace_back(cur);
            return;
        }
        for(int i=0; i<nums.size(); i++){
            if(!used[i]){
                cur.emplace_back(nums[i]);
                used[i] = 1;
                backtracking(result, nums);
                used[i] = 0;
                cur.pop_back();
            }
            
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        vector<vector<int>> result;
        backtracking(result, nums);
        return result;
    }
};

47. 全排列 II

leetcode题目地址

本题在上一题的基础上加入了相同的元素,因此需要对相同元素发起的全排列进行去重,有两种写法,一种是借助一个数组或容器来标识当前层是否已经使用了与当前元素相同的元素;另一种是排序过后判断前一个搜索过的元素与当前元素是否相同。

时间复杂度: O ( n ! ∗ n ) O(n! * n) O(n!∗n)
空间复杂度: O ( n ) O(n) O(n)

去重写法一

cpp 复制代码
// c++
class Solution {
public:
    vector<int> cur;
    // 纵向 标识单个排列中当前元素是否使用
    unordered_map<int, int> used;
    void backtracking(vector<vector<int>>&result, const vector<int>& nums){
        if(cur.size() == nums.size()){
            result.emplace_back(cur);
            return;
        }
        // 横向 标识所有排列中与当前元素相同的值是否已经参加过查找
        unordered_set<int> duplicate;
        for(int i=0; i<nums.size(); i++){
            if(!used[i] && duplicate.find(nums[i])==duplicate.end()){
                used[i] = 1;
                duplicate.insert(nums[i]);
                cur.emplace_back(nums[i]);
                backtracking(result, nums);
                cur.pop_back();
                used[i] = 0;
            }
        }
    }
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        vector<vector<int>> result;
        backtracking(result, nums);
        return result;
    }
};

去重写法二

cpp 复制代码
// c++
class Solution {
public:
    vector<int> cur;
    // 纵向 标识单个排列中当前元素是否使用
    unordered_map<int, int> used;
    void backtracking(vector<vector<int>>&result, const vector<int>& nums){
        if(cur.size() == nums.size()){
            result.emplace_back(cur);
            return;
        }
    
        for(int i=0; i<nums.size(); i++){
           
            if(i>0 && nums[i]==nums[i-1] && used[i-1]) continue;
            if(!used[i]){
                used[i] = 1;
                cur.emplace_back(nums[i]);
                backtracking(result, nums);
                cur.pop_back();
                used[i] = 0;
            }
        }
    }
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        sort(nums.begin(), nums.end()); // 排序
        vector<vector<int>> result;
        backtracking(result, nums);
        return result;
    }
};
相关推荐
进击的小白菜42 分钟前
Java回溯算法解决非递减子序列问题(LeetCode 491)的深度解析
java·算法·leetcode
-一杯为品-2 小时前
【深度学习】#11 优化算法
人工智能·深度学习·算法
_F_y2 小时前
list简单模拟实现
c++·list
前进的程序员2 小时前
C++ 在 Windows 和 Linux 平台上的开发差异及常见问题
linux·c++·windows
-qOVOp-2 小时前
zst-2001 上午题-历年真题 计算机网络(16个内容)
网络·计算机网络·算法
Swift社区2 小时前
涂色不踩雷:如何优雅解决 LeetCode 栅栏涂色问题
算法·leetcode·职场和发展
冠位观测者2 小时前
【Leetcode 每日一题】2900. 最长相邻不相等子序列 I
数据结构·算法·leetcode
努力写代码的熊大2 小时前
链表的中间结点数据结构oj题(力扣876)
数据结构·leetcode·链表
真的没有脑袋2 小时前
概率相关问题
算法·面试
daiwoliyunshang2 小时前
哈希表实现(1):
数据结构·c++