算法训练(leetcode)第二十二天 | 491. 非递减子序列、全排列、47. 全排列 II

刷题记录

  • [491. 非递减子序列](#491. 非递减子序列)
  • [46. 全排列](#46. 全排列)
  • [47. 全排列 II](#47. 全排列 II)

491. 非递减子序列

leetcode题目地址

本题对于去重是一个难点,因为题目不允许排序,所以需要加一个笔记数组来判断相同的元素在同一层是否已经使用。使用set、map都可以达到这个目的。

时间复杂度: O ( n ∗ 2 n ) O(n * 2^n) O(n∗2n)
空间复杂度: O ( n ) O(n) O(n)

cpp 复制代码
// c++
class Solution {
public:
    vector<int> cur;
    void backtracking(vector<vector<int>> &result, const vector<int>& nums, int left){
        if(cur.size()>1){
            result.emplace_back(cur);
        }
        // 负责本层的去重
        unordered_set<int> uset;
        for(int i=left; i<nums.size(); i++){
            // 去重
            if(uset.find(nums[i])!=uset.end()) continue;
            if(cur.size()==0 || cur[cur.size()-1] <= nums[i]) {
                cur.emplace_back(nums[i]);
                uset.insert(nums[i]);
                backtracking(result, nums, i+1);
                cur.pop_back();
            }

        }
    }
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        vector<vector<int>> result;
        backtracking(result, nums, 0);
        return result;
    }
};

46. 全排列

leetcode题目地址

全排列无需记录起始位置(每层都是从头开始找未使用过的元素),只需要控制每个元素在每个排列中只使用一次。借助一个额外的数组或map来实现。

时间复杂度: O ( n ! ) O(n!) O(n!)
空间复杂度: O ( n ) O(n) O(n)

cpp 复制代码
// c++
class Solution {
public:
    vector<int> cur;
    unordered_map<int, int> used;
    
    void backtracking(vector<vector<int>>&result, const vector<int>& nums){
        if(cur.size()==nums.size()){
            result.emplace_back(cur);
            return;
        }
        for(int i=0; i<nums.size(); i++){
            if(!used[i]){
                cur.emplace_back(nums[i]);
                used[i] = 1;
                backtracking(result, nums);
                used[i] = 0;
                cur.pop_back();
            }
            
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        vector<vector<int>> result;
        backtracking(result, nums);
        return result;
    }
};

47. 全排列 II

leetcode题目地址

本题在上一题的基础上加入了相同的元素,因此需要对相同元素发起的全排列进行去重,有两种写法,一种是借助一个数组或容器来标识当前层是否已经使用了与当前元素相同的元素;另一种是排序过后判断前一个搜索过的元素与当前元素是否相同。

时间复杂度: O ( n ! ∗ n ) O(n! * n) O(n!∗n)
空间复杂度: O ( n ) O(n) O(n)

去重写法一

cpp 复制代码
// c++
class Solution {
public:
    vector<int> cur;
    // 纵向 标识单个排列中当前元素是否使用
    unordered_map<int, int> used;
    void backtracking(vector<vector<int>>&result, const vector<int>& nums){
        if(cur.size() == nums.size()){
            result.emplace_back(cur);
            return;
        }
        // 横向 标识所有排列中与当前元素相同的值是否已经参加过查找
        unordered_set<int> duplicate;
        for(int i=0; i<nums.size(); i++){
            if(!used[i] && duplicate.find(nums[i])==duplicate.end()){
                used[i] = 1;
                duplicate.insert(nums[i]);
                cur.emplace_back(nums[i]);
                backtracking(result, nums);
                cur.pop_back();
                used[i] = 0;
            }
        }
    }
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        vector<vector<int>> result;
        backtracking(result, nums);
        return result;
    }
};

去重写法二

cpp 复制代码
// c++
class Solution {
public:
    vector<int> cur;
    // 纵向 标识单个排列中当前元素是否使用
    unordered_map<int, int> used;
    void backtracking(vector<vector<int>>&result, const vector<int>& nums){
        if(cur.size() == nums.size()){
            result.emplace_back(cur);
            return;
        }
    
        for(int i=0; i<nums.size(); i++){
           
            if(i>0 && nums[i]==nums[i-1] && used[i-1]) continue;
            if(!used[i]){
                used[i] = 1;
                cur.emplace_back(nums[i]);
                backtracking(result, nums);
                cur.pop_back();
                used[i] = 0;
            }
        }
    }
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        sort(nums.begin(), nums.end()); // 排序
        vector<vector<int>> result;
        backtracking(result, nums);
        return result;
    }
};
相关推荐
晨非辰6 小时前
C++ 波澜壮阔 40 年:从基础I/O到函数重载与引用的完整构建
运维·c++·人工智能·后端·python·深度学习·c++40周年
艾莉丝努力练剑9 小时前
【C++:C++11】C++11新特性深度解析:从可变参数模板到Lambda表达式
c++·stl·c++11·lambda·可变模版参数
同学小张11 小时前
【端侧AI 与 C++】1. llama.cpp源码编译与本地运行
开发语言·c++·aigc·llama·agi·ai-native
2501_9416233211 小时前
智慧农业监控平台中的多语言语法引擎与实时决策实践
leetcode
轻抚酸~12 小时前
KNN(K近邻算法)-python实现
python·算法·近邻算法
Yue丶越14 小时前
【C语言】字符函数和字符串函数
c语言·开发语言·算法
小白程序员成长日记15 小时前
2025.11.24 力扣每日一题
算法·leetcode·职场和发展
有一个好名字15 小时前
LeetCode跳跃游戏:思路与题解全解析
算法·leetcode·游戏
爱学习的小邓同学15 小时前
C++ --- 多态
开发语言·c++
AndrewHZ16 小时前
【图像处理基石】如何在图像中提取出基本形状,比如圆形,椭圆,方形等等?
图像处理·python·算法·计算机视觉·cv·形状提取