开源大模型RAG企业本地知识库问答机器人-ChatWiki

ChatWiki

ChatWiki是一款开源的知识库 AI 问答系统。系统基于大语言模型(LLM )和检索增强生成(RAG)技术构建,提供开箱即用的数据处理、模型调用等能力,可以帮助企业快速搭建自己的知识库 AI 问答系统。 开源地址 GitHub - zhimaAi/chatwiki: chatwiki

能力


1、专属 AI 问答系统

通过导入企业已有知识构建知识库,让 AI 机器人使用关联的知识库回答问题,快速构建企业专属 AI 问答系统。

2、一键接入模型

ChatWiki已支持全球20多种主流模型,只需要简单配置模型API key等信息即可成功接入模型。

3、数据自动预处理

提供自动分段、QA分段、手动输入和 CSV 等多种方式导入数据,ChatWiki自动对导入的文本数据进行预处理、向量化或 QA 分割。

4、简单易用的使用方式

ChatWiki采用直观的可视化界面设计,通过简洁易懂的操作步骤,可以轻松完成 AI 问答机器人和知识库的创建。

5、适配不同业务场景

ChatWiki为 AI 问答机器人提供了不同的使用渠道,支持H5链接、嵌入网站、绑定到微信公众号或小程序、桌面客户端等,可以满足企业不同业务场景使用需求。

开始使用


准备工作

再安装ChatWiki之前,您需要准备一台具有联网功能的linux服务器,并确保服务器满足最低系统要求

  • Cpu:最低需要2 Core
  • RAM:最低需要4GB

开始安装

ChatWiki社区版基于Docker部署,请先确保服务器已经安装好Docker。如果没有安装,可以通过以下命令安装:

复制代码
sudo curl -sSL https://get.docker.com/ | CHANNEL=stable sh

安装好Docker后,逐步执行一下步骤安装ChatWiki社区版

(1).克隆或下载chatwiki项目代码

复制代码
git clone https://github.com/zhimaAi/chatwiki.git

(2).使用Docker Compose构建并启动项目

复制代码
cd chatwiki/docker
docker compose up -d

部署手册

在安装和部署中有任何问题或者建议,可以联系我们获取帮助,也可以参考下面的文档。

界面


技术架构


技术栈


  • 前端:vue.js

  • 后端:golang +python

  • 数据库:PostgreSQL16+pgvector+zhparser

  • 缓存:redis5.0

  • web服务:nginx

  • 异步队列:nsq

  • 进程管理:supervisor

  • 模型:支持OpenAI、Google Gemini、Claude3、通义千文、文心一言、讯飞星火、百川、腾讯混元等模型。

开源地址 GitHub - zhimaAi/chatwiki: chatwiki

相关推荐
go4it3 小时前
聊聊Spring AI Alibaba的YuQueDocumentReader
llm
Goboy5 小时前
Cursor 玩转 腾讯地图 MCP Server
llm·ai编程·cursor
Jackilina_Stone19 小时前
【论文阅读】平滑量化:对大型语言模型进行准确高效的训练后量化
人工智能·llm·量化·论文阅读笔记
-曾牛19 小时前
企业级AI开发利器:Spring AI框架深度解析与实战
java·人工智能·python·spring·ai·rag·大模型应用
数据智能老司机19 小时前
构建具备自主性的人工智能系统——在生成式人工智能系统中构建信任
深度学习·llm·aigc
JoernLee19 小时前
Cursor:AI时代的智能编辑器
llm·ai编程·cursor
元Y亨H19 小时前
LLM的通俗理解
llm
脑极体1 天前
应激的Llama,开源的困局
llama
Awesome Baron1 天前
《Learning Langchain》阅读笔记8-RAG(4)在vector store中存储embbdings
python·jupyter·chatgpt·langchain·llm
Hank_Liu1 天前
使用Wireshark抓包看看MCP背后的请求链路
llm