【2024LLM应用-数据预处理】之如何从PDF,PPT等非结构化数据提取有效信息(结构化数据JSON)?

🥰大家知道吗,之前在给AI大模型"喂数据"的时候,我们往往需要把非结构化数据(比如PDF、PPT、Excel等)自己手动转成结构化的格式,这可真是太累人儿了。🥵

幸好现在有了Unstructured这个神级库,它内置的数据提取函数可以帮我们快速高效地完成这个转换过程。而且支持常见的多种文件格式!🐶

比如说,如果我们要从一个PPT文件里提取数据,可以用partition_pptx函数:

复制代码
from unstructured.partition.pptx import partition_pptx

filename = "example_files/msft_openai.pptx"
elements = partition_pptx(filename=filename)

这个函数会把PPT文件的内容解析成一个elements列表,每个元素都是一个Element对象,分别代表PPT里的标题、文字、图片等内容。

但是我们想要的是结构化数据而不是对象呀,所以还需要再转换一下:

复制代码
element_dict = [el.to_dict() for el in elements]
print(json.dumps(element_dict, indent=2))

这两行代码的作用是:

  1. 遍历elements列表,把每个Element对象都转换成字典(调用它们的to_dict方法)
  2. 把这些字典组成一个新列表element_dict
  3. 使用json.dumpselement_dict转成Json格式的字符串,并指定indent=2让结果更加美观

是不是很酷?现在我们就拥有了结构化的数据啦!

如果是PDF文件的话,流程也差不多:

复制代码
from unstructured.shared import Files, PartitionParameters
from unstructured.openai_api import SDK

filename = "example_files/CoT.pdf"
with open(filename, "rb") as f:
    files = Files(content=f.read(), file_name=filename)
    
req = PartitionParameters(files=files, strategy='hi_res', pdf_infer_table_structure=True)

s = SDK.get_instance() 
resp = s.general.partition(req)
print(json.dumps(resp.elements, indent=2))

这里主要新的地方是用Files对象来存PDF文件的内容,然后定义一个PartitionParameters来设置处理策略(比如识别表格等)。

最后就是创建SDK实例,调用partition方法,传入之前定义的参数,就能获取PDF里的结构化数据啦!

对于Excel文件,官方文档里也有介绍,应该也是类似的操作。

有了这些技能,我们就能把海量的非结构化数据高效地转换成结构化格式,喂给大模型"吃"啦!以后制作AI应用的时候,效率和开发体验都会更上一层楼~🚀

相关推荐
小毛驴8503 分钟前
软件设计模式-装饰器模式
python·设计模式·装饰器模式
o***Z4486 分钟前
前端性能优化案例
前端
张拭心9 分钟前
前端没有实际的必要了?结合今年工作内容,谈谈我的看法
前端·ai编程
serve the people11 分钟前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
姜太小白18 分钟前
【前端】CSS媒体查询响应式设计详解:@media (max-width: 600px) {……}
前端·css·媒体
闲人编程24 分钟前
Python的导入系统:模块查找、加载和缓存机制
java·python·缓存·加载器·codecapsule·查找器
HIT_Weston29 分钟前
39、【Ubuntu】【远程开发】拉出内网 Web 服务:构建静态网页(二)
linux·前端·ubuntu
百***060130 分钟前
SpringMVC 请求参数接收
前端·javascript·算法
weixin_4577600030 分钟前
Python 数据结构
数据结构·windows·python