【2024LLM应用-数据预处理】之如何从PDF,PPT等非结构化数据提取有效信息(结构化数据JSON)?

🥰大家知道吗,之前在给AI大模型"喂数据"的时候,我们往往需要把非结构化数据(比如PDF、PPT、Excel等)自己手动转成结构化的格式,这可真是太累人儿了。🥵

幸好现在有了Unstructured这个神级库,它内置的数据提取函数可以帮我们快速高效地完成这个转换过程。而且支持常见的多种文件格式!🐶

比如说,如果我们要从一个PPT文件里提取数据,可以用partition_pptx函数:

复制代码
from unstructured.partition.pptx import partition_pptx

filename = "example_files/msft_openai.pptx"
elements = partition_pptx(filename=filename)

这个函数会把PPT文件的内容解析成一个elements列表,每个元素都是一个Element对象,分别代表PPT里的标题、文字、图片等内容。

但是我们想要的是结构化数据而不是对象呀,所以还需要再转换一下:

复制代码
element_dict = [el.to_dict() for el in elements]
print(json.dumps(element_dict, indent=2))

这两行代码的作用是:

  1. 遍历elements列表,把每个Element对象都转换成字典(调用它们的to_dict方法)
  2. 把这些字典组成一个新列表element_dict
  3. 使用json.dumpselement_dict转成Json格式的字符串,并指定indent=2让结果更加美观

是不是很酷?现在我们就拥有了结构化的数据啦!

如果是PDF文件的话,流程也差不多:

复制代码
from unstructured.shared import Files, PartitionParameters
from unstructured.openai_api import SDK

filename = "example_files/CoT.pdf"
with open(filename, "rb") as f:
    files = Files(content=f.read(), file_name=filename)
    
req = PartitionParameters(files=files, strategy='hi_res', pdf_infer_table_structure=True)

s = SDK.get_instance() 
resp = s.general.partition(req)
print(json.dumps(resp.elements, indent=2))

这里主要新的地方是用Files对象来存PDF文件的内容,然后定义一个PartitionParameters来设置处理策略(比如识别表格等)。

最后就是创建SDK实例,调用partition方法,传入之前定义的参数,就能获取PDF里的结构化数据啦!

对于Excel文件,官方文档里也有介绍,应该也是类似的操作。

有了这些技能,我们就能把海量的非结构化数据高效地转换成结构化格式,喂给大模型"吃"啦!以后制作AI应用的时候,效率和开发体验都会更上一层楼~🚀

相关推荐
胡耀超4 分钟前
大模型架构演进全景:从Transformer到下一代智能系统的技术路径(MoE、Mamba/SSM、混合架构)
人工智能·深度学习·ai·架构·大模型·transformer·技术趋势分析
Python×CATIA工业智造4 分钟前
Python索引-值对迭代完全指南:从基础到高性能系统设计
python·pycharm
小杨勇敢飞1 小时前
UNBIASED WATERMARK:大语言模型的无偏差水印
人工智能·语言模型·自然语言处理
Luchang-Li1 小时前
sglang pytorch NCCL hang分析
pytorch·python·nccl
m0_603888711 小时前
Delta Activations A Representation for Finetuned Large Language Models
人工智能·ai·语言模型·自然语言处理·论文速览
金融小师妹1 小时前
基于哈塞特独立性表态的AI量化研究:美联储政策独立性的多维验证
大数据·人工智能·算法
qinyia2 小时前
Wisdom SSH 是一款创新性工具,通过集成 AI 助手,为服务器性能优化带来极大便利。
服务器·人工智能·ssh
昨日之日20064 小时前
Wan2.2-S2V - 音频驱动图像生成电影级质量的数字人视频 ComfyUI工作流 支持50系显卡 一键整合包下载
人工智能·音视频
一个天蝎座 白勺 程序猿6 小时前
Python爬虫(47)Python异步爬虫与K8S弹性伸缩:构建百万级并发数据采集引擎
爬虫·python·kubernetes
li35747 小时前
将已有 Vue 项目通过 Electron 打包为桌面客户端的完整步骤
前端·vue.js·electron