【2024LLM应用-数据预处理】之如何从PDF,PPT等非结构化数据提取有效信息(结构化数据JSON)?

🥰大家知道吗,之前在给AI大模型"喂数据"的时候,我们往往需要把非结构化数据(比如PDF、PPT、Excel等)自己手动转成结构化的格式,这可真是太累人儿了。🥵

幸好现在有了Unstructured这个神级库,它内置的数据提取函数可以帮我们快速高效地完成这个转换过程。而且支持常见的多种文件格式!🐶

比如说,如果我们要从一个PPT文件里提取数据,可以用partition_pptx函数:

from unstructured.partition.pptx import partition_pptx

filename = "example_files/msft_openai.pptx"
elements = partition_pptx(filename=filename)

这个函数会把PPT文件的内容解析成一个elements列表,每个元素都是一个Element对象,分别代表PPT里的标题、文字、图片等内容。

但是我们想要的是结构化数据而不是对象呀,所以还需要再转换一下:

element_dict = [el.to_dict() for el in elements]
print(json.dumps(element_dict, indent=2))

这两行代码的作用是:

  1. 遍历elements列表,把每个Element对象都转换成字典(调用它们的to_dict方法)
  2. 把这些字典组成一个新列表element_dict
  3. 使用json.dumpselement_dict转成Json格式的字符串,并指定indent=2让结果更加美观

是不是很酷?现在我们就拥有了结构化的数据啦!

如果是PDF文件的话,流程也差不多:

from unstructured.shared import Files, PartitionParameters
from unstructured.openai_api import SDK

filename = "example_files/CoT.pdf"
with open(filename, "rb") as f:
    files = Files(content=f.read(), file_name=filename)
    
req = PartitionParameters(files=files, strategy='hi_res', pdf_infer_table_structure=True)

s = SDK.get_instance() 
resp = s.general.partition(req)
print(json.dumps(resp.elements, indent=2))

这里主要新的地方是用Files对象来存PDF文件的内容,然后定义一个PartitionParameters来设置处理策略(比如识别表格等)。

最后就是创建SDK实例,调用partition方法,传入之前定义的参数,就能获取PDF里的结构化数据啦!

对于Excel文件,官方文档里也有介绍,应该也是类似的操作。

有了这些技能,我们就能把海量的非结构化数据高效地转换成结构化格式,喂给大模型"吃"啦!以后制作AI应用的时候,效率和开发体验都会更上一层楼~🚀

相关推荐
bst@微胖子43 分钟前
Python高级语法之selenium
开发语言·python·selenium
Luis Li 的猫猫2 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
默 语2 小时前
百度搜索融合 DeepSeek 满血版,开启智能搜索新篇
百度·ai·deepseek
查理零世2 小时前
【蓝桥杯集训·每日一题2025】 AcWing 6118. 蛋糕游戏 python
python·算法·蓝桥杯
Smile_Gently2 小时前
前端:最简单封装nmp插件(组件)过程。
前端·javascript·vue.js·elementui·vue
魔尔助理顾问3 小时前
一个简洁高效的Flask用户管理示例
后端·python·flask
java1234_小锋3 小时前
一周学会Flask3 Python Web开发-request请求对象与url传参
开发语言·python·flask·flask3
木觞清4 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
诚信爱国敬业友善6 小时前
常见排序方法的总结归类
开发语言·python·算法
The god of big data6 小时前
深入探索 DeepSeek 在数据分析与可视化中的应用
ai·数据挖掘·数据分析