推动能源绿色低碳发展,风机巡检进入国产超高清+AI时代

全球绿色低碳能源数字转型发展正在进入一个重要窗口期。风电作为一种清洁能源,在碳中和过程中扮演重要角色,但风电场运维却是一件十足的"苦差事"。

传统的风机叶片人工巡检方式主要依靠巡检人员利用高倍望远镜检查、高空绕行下降目测检查(蜘蛛人)、叶片维修平台检查等方式进行作业。

此类作业方式缺点显著:
1. 巡检效率低,因停机时间长导致发电量损失较大;
2. 工作强度高,且巡检人员存在较大的安全隐患;
3. 巡检质量无法保证,工人在长时间进行高强度的巡检时容易产生视觉疲劳,影响检测结果及效率。

按照运维计划,风电场运维工程师每月都要爬上80米高的塔筒巡检,在攀爬设备的助力下,一名运维人员每年爬塔筒的高度约等于6613层楼,每台风机平均巡检的面积约600平方米,相当于一个半篮球场,巡检工作点多且面广。

行业内迫切需要一种可以对叶片进行全天候、无需停机的巡检方案。

国产8K摄像机制造厂商BOSMA博冠,利用旗下8K超高清前端采集技术,围绕风电场智能运维方面,研造出24小时全天候可视频监测的风机超高清智能巡检系统,代替传统人工操作冲在最一线,帮助风电场实现风机集中统一管控。结合定点式在线状态监测与数据分析平台,对风机叶片进行近程+远程的双重智能监测。

4K8K+AI风电智能巡检系统

该系统搭载超高分辨率可见光摄像机24小时视频记录叶片表面状态,视觉信息采集数据传输至后端,用风力发电叶片智能巡检平台人工智能算法实现智能辨识,实现同期8K摄像机自动巡检和叶片数字化管理平台运维。通过4K/8K视频数据,可以准确无误地复原现场环境,也能保存记录到的影像资料,方便后期分析和研究。

BOSMA博冠通过8K+AI技术建立设备在线智能监测系统,结合前端8K超高清摄像机S系列设备对风机叶片表面状态进行全天候视频记录监测,本地边缘计算,实现缺陷目标目标智能抓拍,视觉信息采集数据传输至系统进行AI智能辨识缺陷,同时对缺陷等级进行分类,当发现可疑点时,8K画面为AI检测提供充足数据,及时发现异常并告警,并可将巡视结果分级推送给值班人员,实现人工巡视向智能巡视的模式转变,为"无人值班、少人值守、集中监控"的智能化运维管理新模式提供有力支撑。

相关推荐
ZHOU_WUYI2 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若1232 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界3 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221513 小时前
机器学习系列----关联分析
人工智能·机器学习
Robot2513 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
浊酒南街4 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归
畅联云平台4 小时前
美畅物联丨智能分析,安全管控:视频汇聚平台助力智慧工地建设
人工智能·物联网
加密新世界4 小时前
优化 Solana 程序
人工智能·算法·计算机视觉
hunteritself5 小时前
ChatGPT高级语音模式正在向Web网页端推出!
人工智能·gpt·chatgpt·openai·语音识别
Che_Che_5 小时前
Cross-Inlining Binary Function Similarity Detection
人工智能·网络安全·gnn·二进制相似度检测