推动能源绿色低碳发展,风机巡检进入国产超高清+AI时代

全球绿色低碳能源数字转型发展正在进入一个重要窗口期。风电作为一种清洁能源,在碳中和过程中扮演重要角色,但风电场运维却是一件十足的"苦差事"。

传统的风机叶片人工巡检方式主要依靠巡检人员利用高倍望远镜检查、高空绕行下降目测检查(蜘蛛人)、叶片维修平台检查等方式进行作业。

此类作业方式缺点显著:
1. 巡检效率低,因停机时间长导致发电量损失较大;
2. 工作强度高,且巡检人员存在较大的安全隐患;
3. 巡检质量无法保证,工人在长时间进行高强度的巡检时容易产生视觉疲劳,影响检测结果及效率。

按照运维计划,风电场运维工程师每月都要爬上80米高的塔筒巡检,在攀爬设备的助力下,一名运维人员每年爬塔筒的高度约等于6613层楼,每台风机平均巡检的面积约600平方米,相当于一个半篮球场,巡检工作点多且面广。

行业内迫切需要一种可以对叶片进行全天候、无需停机的巡检方案。

国产8K摄像机制造厂商BOSMA博冠,利用旗下8K超高清前端采集技术,围绕风电场智能运维方面,研造出24小时全天候可视频监测的风机超高清智能巡检系统,代替传统人工操作冲在最一线,帮助风电场实现风机集中统一管控。结合定点式在线状态监测与数据分析平台,对风机叶片进行近程+远程的双重智能监测。

4K8K+AI风电智能巡检系统

该系统搭载超高分辨率可见光摄像机24小时视频记录叶片表面状态,视觉信息采集数据传输至后端,用风力发电叶片智能巡检平台人工智能算法实现智能辨识,实现同期8K摄像机自动巡检和叶片数字化管理平台运维。通过4K/8K视频数据,可以准确无误地复原现场环境,也能保存记录到的影像资料,方便后期分析和研究。

BOSMA博冠通过8K+AI技术建立设备在线智能监测系统,结合前端8K超高清摄像机S系列设备对风机叶片表面状态进行全天候视频记录监测,本地边缘计算,实现缺陷目标目标智能抓拍,视觉信息采集数据传输至系统进行AI智能辨识缺陷,同时对缺陷等级进行分类,当发现可疑点时,8K画面为AI检测提供充足数据,及时发现异常并告警,并可将巡视结果分级推送给值班人员,实现人工巡视向智能巡视的模式转变,为"无人值班、少人值守、集中监控"的智能化运维管理新模式提供有力支撑。

相关推荐
qq_416276422 小时前
LOFAR物理频谱特征提取及实现
人工智能
余俊晖2 小时前
如何构造一个文档解析的多模态大模型?MinerU2.5架构、数据、训练方法
人工智能·文档解析
Akamai中国4 小时前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云计算·云服务
LiJieNiub4 小时前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
weixin_519535775 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a5 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void5 小时前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG5 小时前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全
生命是有光的5 小时前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
数字供应链安全产品选型6 小时前
国家级!悬镜安全入选两项“网络安全国家标准应用实践案例”
人工智能·安全·web安全