opencv颜色识别,hsv采用滑块调节

识别效果如图所示,尽量排除了蓝色背景的干扰,hsv可用滑块进行调节,更加方便

python 复制代码
import cv2
import numpy as np

# 创建一个命名窗口,用于显示滑块
cv2.namedWindow("TrackBar")

def nothing(x):
    pass

# 创建滑块控件
cv2.createTrackbar("Hue Min", "TrackBar", 0, 179, nothing)
cv2.createTrackbar("Hue Max", "TrackBar", 179, 179, nothing)
cv2.createTrackbar("Sat Min", "TrackBar", 99, 255, nothing)
cv2.createTrackbar("Sat Max", "TrackBar", 255, 255, nothing)
cv2.createTrackbar("Val Min", "TrackBar", 114, 255, nothing)
cv2.createTrackbar("Val Max", "TrackBar", 255, 255, nothing)

# 初始化滑块值
cv2.setTrackbarPos("Hue Min", "TrackBar", 0)
cv2.setTrackbarPos("Hue Max", "TrackBar", 88)
cv2.setTrackbarPos("Sat Min", "TrackBar", 147)
cv2.setTrackbarPos("Sat Max", "TrackBar", 255)
cv2.setTrackbarPos("Val Min", "TrackBar", 114)
cv2.setTrackbarPos("Val Max", "TrackBar", 255)

# 打开摄像头
cap = cv2.VideoCapture(0)

if not cap.isOpened():
    print("Error: Could not open camera.")
    exit()

while True:
    # 读取一帧视频
    ret, frame = cap.read()
    if not ret:
        print("Error: Could not read frame.")
        break

    # 转换图像颜色空间为HSV
    imgHSV = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

    # 获取滑块的当前值
    hueLow = cv2.getTrackbarPos("Hue Min", "TrackBar")
    hueHigh = cv2.getTrackbarPos("Hue Max", "TrackBar")
    satLow = cv2.getTrackbarPos("Sat Min", "TrackBar")
    satHigh = cv2.getTrackbarPos("Sat Max", "TrackBar")
    valLow = cv2.getTrackbarPos("Val Min", "TrackBar")
    valHigh = cv2.getTrackbarPos("Val Max", "TrackBar")

    # 创建掩膜
    lower_red = np.array([hueLow, satLow, valLow])
    upper_red = np.array([hueHigh, satHigh, valHigh])
    mask = cv2.inRange(imgHSV, lower_red, upper_red)

    # 应用中值模糊来减少噪声
    mask = cv2.medianBlur(mask, 7)

    # 使用掩膜提取图像的特定部分
    imageResult = cv2.bitwise_and(frame, frame, mask=mask)

    # 查找轮廓
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # 查找最大轮廓
    max_contour = None
    max_area = 0
    for contour in contours:
        area = cv2.contourArea(contour)
        if area > max_area:
            max_area = area
            max_contour = contour

    # 在原始图像上绘制矩形框
    if max_contour is not None and max_area > 500:  # 忽略小区域
        x, y, w, h = cv2.boundingRect(max_contour)
        cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)

    # 显示原始图像和掩膜效果
    cv2.imshow('Original', frame)
    cv2.imshow('HSV', imgHSV)
    cv2.imshow('Mask Result', imageResult)

    # 按'q'键退出
    if cv2.waitKey(1) == ord('q'):
        break

# 释放摄像头并销毁所有窗口
cap.release()
cv2.destroyAllWindows()
相关推荐
xiucai_cs2 分钟前
AI RAG 本地知识库实战
人工智能·知识库·dify·rag·ollama
zhangfeng11337 分钟前
大模型微调时 Firefly(流萤)和 LlamaFactory(LLaMA Factory)这两个工具/框架之间做出合适的选择
人工智能·llama
zhangyifang_0099 分钟前
MCP——AI连接现实世界的“标准接口”
人工智能
LOnghas12111 小时前
电动汽车充电接口自动识别与定位_yolo13-C3k2-Converse_六种主流充电接口检测分类
人工智能·目标跟踪·分类
编码小哥1 小时前
OpenCV图像滤波技术详解:从均值滤波到双边滤波
人工智能·opencv·均值算法
阿杰学AI1 小时前
AI核心知识78——大语言模型之CLM(简洁且通俗易懂版)
人工智能·算法·ai·语言模型·rag·clm·语境化语言模型
新缸中之脑1 小时前
氛围编程一个全栈AI交易应用
人工智能
码云数智-大飞1 小时前
Oracle RAS:AI时代守护企业数据安全的智能盾牌
数据库·人工智能·oracle
余俊晖1 小时前
Qwen3-VL-0.6B?Reyes轻量化折腾:一个从0到1开始训练的0.6B参数量的多模态大模型
人工智能·自然语言处理·多模态
zuozewei1 小时前
7D-AI系列:DeepSeek Engram 架构代码分析
人工智能·架构