昇思11天

基于 MindSpore 实现 BERT 对话情绪识别

BERT模型概述

BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年开发并发布的一种新型语言模型。BERT在许多自然语言处理(NLP)任务中发挥着重要作用,例如问答、命名实体识别、自然语言推理和文本分类。BERT基于Transformer中的Encoder,并采用了双向的结构,因此掌握Transformer的Encoder结构是理解BERT的基础。

BERT模型的主要创新点

BERT模型的主要创新点在于其预训练方法,即使用了**Masked Language Model(MLM)Next Sentence Prediction(NSP)**两种方法来分别捕捉词语和句子级别的表征(representation)。

Masked Language Model(MLM)

在MLM训练中,随机将语料库中15%的单词进行Mask操作。具体操作如下:

  • 80%的单词直接用[Mask]替换。
  • 10%的单词替换成其他随机的单词。
  • 10%的单词保持不变。

通过这种方式,模型需要预测被Mask的词,从而捕捉到单词级别的语义信息。

Next Sentence Prediction(NSP)

NSP的目的是让模型理解两个句子之间的联系。训练的输入是句子A和B,B有一半的几率是A的下一句。通过预测B是否为A的下一句,模型能够学习到句子级别的语义关系。

BERT的预训练和Fine-tuning

BERT预训练之后,会保存其Embedding table和12层Transformer权重(BERT-BASE)或24层Transformer权重(BERT-LARGE)。预训练好的BERT模型可以用于下游任务的Fine-tuning,如文本分类、相似度判断和阅读理解等。

对话情绪识别(EmoTect)

对话情绪识别(Emotion Detection,简称EmoTect) ,旨在识别智能对话场景中的用户情绪。针对用户文本,自动判断其情绪类别并给出相应的置信度。情绪类型一般分为积极、消极和中性。对话情绪识别适用于聊天、客服等多个场景,帮助企业更好地把握对话质量、改善用户交互体验,分析客服服务质量并降低人工质检成本。

步骤:通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。

有构建好的,直接调用:

from mindnlp.transformers import BertForSequenceClassification, BertModel

相关推荐
qq_416276422 小时前
LOFAR物理频谱特征提取及实现
人工智能
Python图像识别3 小时前
71_基于深度学习的布料瑕疵检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
余俊晖3 小时前
如何构造一个文档解析的多模态大模型?MinerU2.5架构、数据、训练方法
人工智能·文档解析
Akamai中国4 小时前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云计算·云服务
LiJieNiub5 小时前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
哥布林学者5 小时前
吴恩达深度学习课程一:神经网络和深度学习 第三周:浅层神经网络(二)
深度学习·ai
weixin_519535775 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a6 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void6 小时前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG6 小时前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全