昇思11天

基于 MindSpore 实现 BERT 对话情绪识别

BERT模型概述

BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年开发并发布的一种新型语言模型。BERT在许多自然语言处理(NLP)任务中发挥着重要作用,例如问答、命名实体识别、自然语言推理和文本分类。BERT基于Transformer中的Encoder,并采用了双向的结构,因此掌握Transformer的Encoder结构是理解BERT的基础。

BERT模型的主要创新点

BERT模型的主要创新点在于其预训练方法,即使用了**Masked Language Model(MLM)Next Sentence Prediction(NSP)**两种方法来分别捕捉词语和句子级别的表征(representation)。

Masked Language Model(MLM)

在MLM训练中,随机将语料库中15%的单词进行Mask操作。具体操作如下:

  • 80%的单词直接用[Mask]替换。
  • 10%的单词替换成其他随机的单词。
  • 10%的单词保持不变。

通过这种方式,模型需要预测被Mask的词,从而捕捉到单词级别的语义信息。

Next Sentence Prediction(NSP)

NSP的目的是让模型理解两个句子之间的联系。训练的输入是句子A和B,B有一半的几率是A的下一句。通过预测B是否为A的下一句,模型能够学习到句子级别的语义关系。

BERT的预训练和Fine-tuning

BERT预训练之后,会保存其Embedding table和12层Transformer权重(BERT-BASE)或24层Transformer权重(BERT-LARGE)。预训练好的BERT模型可以用于下游任务的Fine-tuning,如文本分类、相似度判断和阅读理解等。

对话情绪识别(EmoTect)

对话情绪识别(Emotion Detection,简称EmoTect) ,旨在识别智能对话场景中的用户情绪。针对用户文本,自动判断其情绪类别并给出相应的置信度。情绪类型一般分为积极、消极和中性。对话情绪识别适用于聊天、客服等多个场景,帮助企业更好地把握对话质量、改善用户交互体验,分析客服服务质量并降低人工质检成本。

步骤:通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。

有构建好的,直接调用:

from mindnlp.transformers import BertForSequenceClassification, BertModel

相关推荐
东哥说-MES|从入门到精通1 分钟前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
小殊小殊1 分钟前
DeepSeek为什么这么慢?
人工智能·深度学习
极客BIM工作室18 分钟前
从静态到动态:Sora与文生图潜在扩散模型的技术同异与AIGC演进逻辑
人工智能·aigc
松果财经22 分钟前
长沙的青年友好,五年见“城”心
人工智能
秋邱24 分钟前
智启未来:AGI 教育融合 × 跨平台联盟 × 个性化空间,重构教育 AI 新范式开篇:一场 “教育 ×AI” 的范式革命
人工智能·python·重构·推荐算法·agi
黑客思维者30 分钟前
ChatGPT软件开发提示词库:开发者常用150个中文提示词分类与应用场景设计
人工智能·chatgpt·提示词·软件开发
IT_陈寒39 分钟前
React性能优化:这5个Hooks技巧让我减少了40%的重新渲染
前端·人工智能·后端
七牛云行业应用39 分钟前
解决 AI 视频角色闪烁与时长限制:基于即梦/可灵的多模型 Pipeline 实战
人工智能·音视频·ai视频
哔哩哔哩技术1 小时前
B站社群AI智能分析系统的实践
人工智能
xcLeigh1 小时前
AI的提示词专栏:“Re-prompting” 与迭代式 Prompt 调优
人工智能·ai·prompt·提示词