昇思11天

基于 MindSpore 实现 BERT 对话情绪识别

BERT模型概述

BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年开发并发布的一种新型语言模型。BERT在许多自然语言处理(NLP)任务中发挥着重要作用,例如问答、命名实体识别、自然语言推理和文本分类。BERT基于Transformer中的Encoder,并采用了双向的结构,因此掌握Transformer的Encoder结构是理解BERT的基础。

BERT模型的主要创新点

BERT模型的主要创新点在于其预训练方法,即使用了**Masked Language Model(MLM)Next Sentence Prediction(NSP)**两种方法来分别捕捉词语和句子级别的表征(representation)。

Masked Language Model(MLM)

在MLM训练中,随机将语料库中15%的单词进行Mask操作。具体操作如下:

  • 80%的单词直接用[Mask]替换。
  • 10%的单词替换成其他随机的单词。
  • 10%的单词保持不变。

通过这种方式,模型需要预测被Mask的词,从而捕捉到单词级别的语义信息。

Next Sentence Prediction(NSP)

NSP的目的是让模型理解两个句子之间的联系。训练的输入是句子A和B,B有一半的几率是A的下一句。通过预测B是否为A的下一句,模型能够学习到句子级别的语义关系。

BERT的预训练和Fine-tuning

BERT预训练之后,会保存其Embedding table和12层Transformer权重(BERT-BASE)或24层Transformer权重(BERT-LARGE)。预训练好的BERT模型可以用于下游任务的Fine-tuning,如文本分类、相似度判断和阅读理解等。

对话情绪识别(EmoTect)

对话情绪识别(Emotion Detection,简称EmoTect) ,旨在识别智能对话场景中的用户情绪。针对用户文本,自动判断其情绪类别并给出相应的置信度。情绪类型一般分为积极、消极和中性。对话情绪识别适用于聊天、客服等多个场景,帮助企业更好地把握对话质量、改善用户交互体验,分析客服服务质量并降低人工质检成本。

步骤:通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。

有构建好的,直接调用:

from mindnlp.transformers import BertForSequenceClassification, BertModel

相关推荐
大模型最新论文速读几秒前
RelayLLM:token 级大小模型接力加速推理
论文阅读·人工智能·深度学习·机器学习·自然语言处理
智驱力人工智能1 分钟前
矿场轨道异物AI监测系统 构建矿山运输安全的智能感知防线 轨道异物检测 基于YOLO的轨道异物识别算法 地铁隧道轨道异物实时预警技术
人工智能·opencv·算法·安全·yolo·边缘计算
杜子不疼.2 分钟前
【AI】重构知识体系:跨模态信息处理与关联理解
人工智能·重构
设计是门艺术4 分钟前
2026 工作总结 PPT 生成工具 TOP5!
人工智能
就这个丶调调4 分钟前
Python学习路线全攻略:从入门到精通
人工智能·python·编程入门·学习路线
格林威5 分钟前
基于灰度投影的快速图像配准:适用于产线在线对位的 5 个核心方法,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·工业相机
peixiuhui6 分钟前
EdgeGateway 快速开始手册-WEB登录
人工智能·mqtt·边缘计算·iot·modbus·iotgateway·开源网关
Yvonne爱编码7 分钟前
边缘计算与云计算的协同发展:未来算力布局的核心逻辑
人工智能·云计算·边缘计算
叫我:松哥8 分钟前
基于Flask开发的智能招聘平台,集成了AI匹配引擎、数据预测分析和可视化展示功能
人工智能·后端·python·信息可视化·自然语言处理·flask·推荐算法
IT_陈寒8 分钟前
Java开发者必知的5个性能优化技巧,让应用速度提升300%!
前端·人工智能·后端