【YOLOv9教程】如何使用YOLOv9进行图像与视频检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。

更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~

👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称 项目名称
1.【人脸识别与管理系统开发 2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发 4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发 6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发 8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统 10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统 12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统 14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统 16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统 18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统 20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统 22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统 24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统 26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统 28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统 30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统 32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统 34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统 36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统 38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统 40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统 42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统 44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统 46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统 48.【车辆检测追踪与流量计数系统
49.【行人检测追踪与双向流量计数系统 50.【基于YOLOv8深度学习的反光衣检测与预警系统
51.【危险区域人员闯入检测与报警系统 52.【高密度人脸智能检测与统计系统

二、机器学习实战专栏【链接】 ,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

介绍

在之前的博客文章中,我们介绍了如何使用 YOLOv8 进行对象检测。这篇文章则主要介绍如何使用YOLOv9进行图像与视频检测

YOLOv9 与其前身一样,专注于识别和精确定位图像和视频中的对象。自动驾驶汽车、安全系统和高级图像搜索等应用在很大程度上依赖于此功能。YOLOv9 引入了比 YOLOv8 更令人印象深刻的创新点。

使用 YOLOv9 处理图像和视频

步骤 1:安装必要的库

pip install opencv-python ultralytics

第 2 步:导入库

python 复制代码
import cv2
from ultralytics import YOLO

第 3 步:选择模型型号尺寸

model = YOLO("yolov9c.pt")

这里,我们选择了 yolov9c.pt。大家可以选择不同的模型尺寸进行检测,并比较不同的型号并权衡它们各自的优缺点。

第 4 步:编写一个函数来预测和检测图像和视频中的对象

python 复制代码
def predict(chosen_model, img, classes=[], conf=0.5):
    if classes:
        results = chosen_model.predict(img, classes=classes, conf=conf)
    else:
        results = chosen_model.predict(img, conf=conf)

    return results

def predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):
    results = predict(chosen_model, img, classes, conf=conf)
    for result in results:
        for box in result.boxes:
            cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),
                          (int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)
            cv2.putText(img, f"{result.names[int(box.cls[0])]}",
                        (int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),
                        cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)
    return img, results

predict() 功能

此函数采用三个参数:

  • chosen_model :用于预测的训练模型
  • img :要进行预测的图像
  • classes :(可选)要将预测筛选到的类名列表
  • conf :(可选)要考虑的预测的最小置信度阈值

该函数首先检查是否提供了 classes 参数。如果是,则使用 classes 参数调用该chosen_model.predict() 方法,该参数仅将预测筛选为这些类。否则,将调用该 chosen_model.predict() 方法时不带 classes 参数,该参数将返回所有预测。

conf 参数用于筛选出置信度分数低于指定阈值的预测。这对于消除误报很有用。

该函数返回预测结果列表,其中每个结果都包含以下信息:

  • name :预测类的名称
  • conf :预测的置信度分数
  • box :预测对象的边界框

predict_and_detect() 功能

此函数采用与 predict() 函数相同的参数,但除了预测结果外,它还返回带注释的图像。

该函数首先调用该 predict() 函数以获取预测结果。然后,它循环访问预测结果,并在每个预测对象周围绘制一个边界框。预测类的名称也写在边界框上方。

该函数返回一个包含带注释的图像和预测结果的元组。

以下是这两个函数之间差异的摘要:

  • predict() 函数仅返回预测结果,而该 predict_and_detect() 函数还返回带注释的图像。
  • predict_and_detect() 函数是 predict() 函数的包装器,这意味着它在内部调用函数 predict()

第 5 步:使用 YOLOv9 检测图像

python 复制代码
# read the image
image = cv2.imread("YourImagePath")
result_img, _ = predict_and_detect(model, image, classes=[], conf=0.5)

如果要检测特定类,只需在类列表classes中输入对象的 ID 号即可。

第 6 步:保存并绘制结果图像

python 复制代码
cv2.imshow("Image", result_img)
cv2.imwrite("YourSavePath", result_img)
cv2.waitKey(0)

第 7 步:使用 YOLOv9 检测视频

python 复制代码
video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:
    success, img = cap.read()
    if not success:
        break
    result_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)
    cv2.imshow("Image", result_img)
    
    cv2.waitKey(1)

第 8 步:保存结果视频

python 复制代码
# 定义保存函数
def create_video_writer(video_cap, output_filename):
    # grab the width, height, and fps of the frames in the video stream.
    frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(video_cap.get(cv2.CAP_PROP_FPS))
    #初始化
    fourcc = cv2.VideoWriter_fourcc(*'MP4V')
    writer = cv2.VideoWriter(output_filename, fourcc, fps,
                             (frame_width, frame_height))
    return writer

只需使用上面的函数和代码即可

python 复制代码
output_filename = "YourFilename"
writer = create_video_writer(cap, output_filename)

video_path = r"YourVideoPath"
cap = cv2.VideoCapture(video_path)
while True:
    success, img = cap.read()
    if not success:
        break
    result_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)
    writer.write(result_img)
    cv2.imshow("Image", result_img)
    
    cv2.waitKey(1)
writer.release()

结论

在本文中,我们学习了如何使用 YOLOv9 检测图像和视频中的对象。如果您觉得此代码有用,感谢点赞关注。

引用

YOLOv9论文:https://arxiv.org/abs/2402.13616

YOLOv9 源码地址:https://github.com/WongKinYiu/yolov9


关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【开源】可获取更多学习资源

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

相关推荐
晨曦_子画2 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云4 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
人工智能培训咨询叶梓13 分钟前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调
zzZ_CMing13 分钟前
大语言模型训练的全过程:预训练、微调、RLHF
人工智能·自然语言处理·aigc
newxtc14 分钟前
【旷视科技-注册/登录安全分析报告】
人工智能·科技·安全·ddddocr
成都古河云15 分钟前
智慧场馆:安全、节能与智能化管理的未来
大数据·运维·人工智能·安全·智慧城市
UCloud_TShare18 分钟前
浅谈语言模型推理框架 vLLM 0.6.0性能优化
人工智能
软工菜鸡23 分钟前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
vivid_blog29 分钟前
大语言模型(LLM)入门级选手初学教程 III
人工智能·语言模型·自然语言处理
AI视觉网奇1 小时前
sklearn 安装使用笔记
人工智能·算法·sklearn