逻辑回归中的损失函数

一、损失函数介绍:

  • 回归问题成本函数不同的是 ,逻辑回归模型(解决分类问题)的成本函数在获得损失J的时候不再用真实值y与预测值y^的差值计算损失,真实值y不再出现在公式中作为计算项
  • 首先,该次训练损失为训练集中所有样本损失求和取平均值。
  • 其次,上述损失函数如何在不计算真实值与预测值的差值的情况下获得训练损失? 解释如下:
    • 对于第一个函数:样本标签的真实值为1时适用的损失函数

      • 图像中横坐标为预测值y^,纵坐标为损失
      • 可以看到预测值越接近1,即分类越接近正确,损失越小(因为真实值为1);预测值越接近0,即分类越离谱,损失越大(因为真实值为1)。****【这就非常神奇地在不计算真实值与预测值的差值的情况下获得了训练损失】
    • 对于第二个函数:样本标签的真实值为0时适用的损失函数

      • 图像中横坐标为预测值y^,纵坐标为损失
      • 可以看到预测值越接近0,即分类越接近正确,损失越小(因为真实值为0);预测值越接近1,即分类越离谱,损失越大(因为真实值为0)。【这就非常神奇地在不计算真实值与预测值的差值的情况下获得了训练损失】

二、简化损失函数:

我们可以将分段函数L进行简化:

得到最终的损失函数:

相关推荐
LYFlied9 小时前
【每日算法】LeetCode 153. 寻找旋转排序数组中的最小值
数据结构·算法·leetcode·面试·职场和发展
唐装鼠9 小时前
rust自动调用Deref(deepseek)
开发语言·算法·rust
ytttr87310 小时前
MATLAB基于LDA的人脸识别算法实现(ORL数据库)
数据库·算法·matlab
Coding茶水间11 小时前
基于深度学习的安检危险品检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
jianfeng_zhu12 小时前
整数数组匹配
数据结构·c++·算法
smj2302_7968265212 小时前
解决leetcode第3782题交替删除操作后最后剩下的整数
python·算法·leetcode
dulu~dulu12 小时前
机器学习题目总结(一)
人工智能·神经网络·决策树·机器学习·学习笔记·线性模型·模型评估与选择
LYFlied13 小时前
【每日算法】LeetCode 136. 只出现一次的数字
前端·算法·leetcode·面试·职场和发展
Niuguangshuo13 小时前
自编码器与变分自编码器:【2】自编码器的局限性
pytorch·深度学习·机器学习
唯唯qwe-13 小时前
Day23:动态规划 | 爬楼梯,不同路径,拆分
算法·leetcode·动态规划