逻辑回归中的损失函数

一、损失函数介绍:

  • 回归问题成本函数不同的是 ,逻辑回归模型(解决分类问题)的成本函数在获得损失J的时候不再用真实值y与预测值y^的差值计算损失,真实值y不再出现在公式中作为计算项
  • 首先,该次训练损失为训练集中所有样本损失求和取平均值。
  • 其次,上述损失函数如何在不计算真实值与预测值的差值的情况下获得训练损失? 解释如下:
    • 对于第一个函数:样本标签的真实值为1时适用的损失函数

      • 图像中横坐标为预测值y^,纵坐标为损失
      • 可以看到预测值越接近1,即分类越接近正确,损失越小(因为真实值为1);预测值越接近0,即分类越离谱,损失越大(因为真实值为1)。****【这就非常神奇地在不计算真实值与预测值的差值的情况下获得了训练损失】
    • 对于第二个函数:样本标签的真实值为0时适用的损失函数

      • 图像中横坐标为预测值y^,纵坐标为损失
      • 可以看到预测值越接近0,即分类越接近正确,损失越小(因为真实值为0);预测值越接近1,即分类越离谱,损失越大(因为真实值为0)。【这就非常神奇地在不计算真实值与预测值的差值的情况下获得了训练损失】

二、简化损失函数:

我们可以将分段函数L进行简化:

得到最终的损失函数:

相关推荐
yuuki23323312 分钟前
【C++】模拟实现 AVL树
java·c++·算法
dog25042 分钟前
阿基米德的有限步逼近思想求圆面积
算法
龙山云仓1 小时前
No153:AI中国故事-对话毕昇——活字印刷与AI知识生成:模块化思想与信息革
大数据·人工智能·机器学习
想做功的洛伦兹力11 小时前
2026/2/13日打卡
算法
仟濹1 小时前
【算法打卡day7(2026-02-12 周四)算法:BFS and BFS】 3_卡码网107_寻找存在的路线_并查集
数据结构·算法·图论·宽度优先
YuTaoShao1 小时前
【LeetCode 每日一题】3713. 最长的平衡子串 I ——(解法二)暴力枚举 + 优化
算法·leetcode·职场和发展
蜡笔小马1 小时前
20.Boost.Geometry 中常用空间算法详解:crosses、densify、difference 与离散距离度量
c++·算法·boost
rgb2gray1 小时前
优多元分层地理探测器模型(OMGD)研究
人工智能·算法·机器学习·回归·gwr
(; ̄ェ ̄)。1 小时前
机器学习入门(二十一)特征工程
人工智能·机器学习
码农三叔1 小时前
《卷2:人形机器人的环境感知与多模态融合》
人工智能·嵌入式硬件·算法·机器人·人形机器人