逻辑回归中的损失函数

一、损失函数介绍:

  • 回归问题成本函数不同的是 ,逻辑回归模型(解决分类问题)的成本函数在获得损失J的时候不再用真实值y与预测值y^的差值计算损失,真实值y不再出现在公式中作为计算项
  • 首先,该次训练损失为训练集中所有样本损失求和取平均值。
  • 其次,上述损失函数如何在不计算真实值与预测值的差值的情况下获得训练损失? 解释如下:
    • 对于第一个函数:样本标签的真实值为1时适用的损失函数

      • 图像中横坐标为预测值y^,纵坐标为损失
      • 可以看到预测值越接近1,即分类越接近正确,损失越小(因为真实值为1);预测值越接近0,即分类越离谱,损失越大(因为真实值为1)。****【这就非常神奇地在不计算真实值与预测值的差值的情况下获得了训练损失】
    • 对于第二个函数:样本标签的真实值为0时适用的损失函数

      • 图像中横坐标为预测值y^,纵坐标为损失
      • 可以看到预测值越接近0,即分类越接近正确,损失越小(因为真实值为0);预测值越接近1,即分类越离谱,损失越大(因为真实值为0)。【这就非常神奇地在不计算真实值与预测值的差值的情况下获得了训练损失】

二、简化损失函数:

我们可以将分段函数L进行简化:

得到最终的损失函数:

相关推荐
爱思德学术20 分钟前
中国计算机学会(CCF)推荐学术会议-B(交叉/综合/新兴):BIBM 2025
算法
冰糖猕猴桃30 分钟前
【Python】进阶 - 数据结构与算法
开发语言·数据结构·python·算法·时间复杂度、空间复杂度·树、二叉树·堆、图
lifallen44 分钟前
Paimon vs. HBase:全链路开销对比
java·大数据·数据结构·数据库·算法·flink·hbase
liujing102329292 小时前
Day04_刷题niuke20250703
java·开发语言·算法
2401_881244402 小时前
Treap树
数据结构·算法
乌萨奇也要立志学C++2 小时前
二叉树OJ题(单值树、相同树、找子树、构建和遍历)
数据结构·算法
网安INF2 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
wsxqaz2 小时前
浏览器原生控件上传PDF导致hash值不同
算法·pdf·哈希算法
蓝婷儿3 小时前
Python 数据分析与可视化 Day 14 - 建模复盘 + 多模型评估对比(逻辑回归 vs 决策树)
python·数据分析·逻辑回归
NAGNIP3 小时前
Transformer注意力机制——MHA&MQA&GQA
人工智能·算法