Hadoop-20 Flume 采集数据双写至本地+HDFS中 监控目录变化 3个Agent MemoryChannel Source对比

章节内容

上一节完成了如下的内容:

  • 编写Agent Conf配置文件
  • 收集Hive数据
  • 汇聚到HDFS中
  • 测试效果

背景介绍

这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学习。

之前已经在 VM 虚拟机上搭建过一次,但是没留下笔记,这次趁着前几天薅羊毛的3台机器,赶紧尝试在公网上搭建体验一下。

  • 2C4G 编号 h121
  • 2C4G 编号 h122
  • 2C2G 编号 h123

文档推荐

除了官方文档以外,这里有一个写的很好的中文文档:
https://flume.liyifeng.org/

监控目录

业务需求

  • 想要监控指定目录 收集信息并上传到HDFS中

Source

选择 spooldir,因为 spooldir 能够保证数据不丢失,且能够进行断点续传,但是延迟较高,不能实时监控。

Channel

选择 memory

Sink

选择 HDFS

需要注意

  • 拷贝到 spool 目录下的文件 不可以再打开编辑
  • 无法监控子目录的文件夹变动
  • 被监控文件夹每500毫秒 扫描一次文件变动
  • 适合用于同步新文件,但不适合对实时追加日志的文件进行监听并同步

配置文件

shell 复制代码
cd /opt/wzk/flume_test
vim flume_spooldir-hdfs.conf

我们需要写入如下内容

shell 复制代码
# Name the components on this agent
a3.sources = r3
a3.channels = c3
a3.sinks = k3
# Describe/configure the source
a3.sources.r3.type = spooldir
# 注意这里的文件夹 换成自己的!!!
a3.sources.r3.spoolDir = /opt/wzk/upload
a3.sources.r3.fileSuffix = .COMPLETED
a3.sources.r3.fileHeader = true

# 忽略以.tmp结尾的文件,不上传
a3.sources.r3.ignorePattern = ([^ ]*\.tmp)
# Use a channel which buffers events in memory
a3.channels.c3.type = memory
a3.channels.c3.capacity = 10000
a3.channels.c3.transactionCapacity = 500
# Describe the sink
a3.sinks.k3.type = hdfs
# 注意修改成你自己的IP!!!
a3.sinks.k3.hdfs.path = hdfs://h121.wzk.icu:9000/flume/upload/%Y%m%d/%H%M

# 上传文件的前缀
a3.sinks.k3.hdfs.filePrefix = upload-
# 是否使用本地时间戳
a3.sinks.k3.hdfs.useLocalTimeStamp = true
# 积攒500个Event,flush到HDFS一次
a3.sinks.k3.hdfs.batchSize = 500
# 设置文件类型
a3.sinks.k3.hdfs.fileType = DataStream
# 60秒滚动一次
a3.sinks.k3.hdfs.rollInterval = 60
# 128M滚动一次
a3.sinks.k3.hdfs.rollSize = 134217700
# 文件滚动与event数量无关
a3.sinks.k3.hdfs.rollCount = 0
# 最小冗余数
a3.sinks.k3.hdfs.minBlockReplicas = 1

# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3

启动Agent

shell 复制代码
$FLUME_HOME/bin/flume-ng agent --name a3 \
--conf-file flume-spooldir-hdfs.conf \
-Dflume.root.logger=INFO,console

测试效果

Flume

shell 复制代码
cd /opt/wzk/upload
vim 1.txt

随便向其中写入一些内容,并保存,可以看到Flume已经有反应了。

HDFS

查看HDFS,也已经有内容了

采集双写

这里业务上需要:

  • Flume将数据写入本地
  • Flume将数据写入HDFS

分析实现

  • 需要多个Agent级联实现
  • Source选择taildir
  • Channel选择memory
  • 最终的Sink分别选择HDFS,file_roll

配置文件1

配置文件包含如下内容:

  • 1个 taildir source
  • 2个 memory channel
  • 2个 avro sink

新建文件

shell 复制代码
vim flume-taildir-avro.conf

写入如下内容

shell 复制代码
# Name the components on this agent
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# 将数据流复制给所有channel
a1.sources.r1.selector.type = replicating
# source
a1.sources.r1.type = taildir
# 记录每个文件最新消费位置
a1.sources.r1.positionFile = /root/flume/taildir_position.json
a1.sources.r1.filegroups = f1
# 备注:.*log 是正则表达式;这里写成 *.log 是错误的
a1.sources.r1.filegroups.f1 = /tmp/root/.*log
# sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = linux123
a1.sinks.k1.port = 9091
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = linux123
a1.sinks.k2.port = 9092
# channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 500
a1.channels.c2.type = memory
a1.channels.c2.capacity = 10000
a1.channels.c2.transactionCapacity = 500
# Bind the source and sink to the channel
a1.sources.r1.channels = c1 c2
a1.sinks.k1.channel = c1
a1.sinks.k2.channel = c2

配置文件2

配置文件包含如下内容:

  • 1个 avro source
  • 1个 memory channel
  • 1个 hdfs sink

新建配置文件

shell 复制代码
vim flume-avro-hdfs.conf

写入如下的内容:

shell 复制代码
# Name the components on this agent
a2.sources = r1
a2.sinks = k1
a2.channels = c1
# Describe/configure the source
a2.sources.r1.type = avro
a2.sources.r1.bind = linux123
a2.sources.r1.port = 9091
# Describe the channel
a2.channels.c1.type = memory
a2.channels.c1.capacity = 10000
a2.channels.c1.transactionCapacity = 500
# Describe the sink
a2.sinks.k1.type = hdfs
a2.sinks.k1.hdfs.path = hdfs://linux121:8020/flume2/%Y%m%d/%H
# 上传文件的前缀
a2.sinks.k1.hdfs.filePrefix = flume2-
# 是否使用本地时间戳
a2.sinks.k1.hdfs.useLocalTimeStamp = true
# 500个Event才flush到HDFS一次
a2.sinks.k1.hdfs.batchSize = 500
# 设置文件类型,可支持压缩
a2.sinks.k1.hdfs.fileType = DataStream
# 60秒生成一个新的文件
a2.sinks.k1.hdfs.rollInterval = 60
a2.sinks.k1.hdfs.rollSize = 0
a2.sinks.k1.hdfs.rollCount = 0
a2.sinks.k1.hdfs.minBlockReplicas = 1
# Bind the source and sink to the channel
a2.sources.r1.channels = c1
a2.sinks.k1.channel = c1

配置文件3

配置文件包含如下内容:

  • 1个 avro source
  • 1个 memory channel
  • 1个 file_roll sink

新建配置文件

shell 复制代码
vim flume-avro-file.conf

写入如下的内容

shell 复制代码
# Name the components on this agent
a3.sources = r1
a3.sinks = k1
a3.channels = c2
# Describe/configure the source
a3.sources.r1.type = avro
a3.sources.r1.bind = linux123
a3.sources.r1.port = 9092
# Describe the sink
a3.sinks.k1.type = file_roll
# 目录需要提前创建好
a3.sinks.k1.sink.directory = /root/flume/output
# Describe the channel
a3.channels.c2.type = memory
a3.channels.c2.capacity = 10000
a3.channels.c2.transactionCapacity = 500
# Bind the source and sink to the channel
a3.sources.r1.channels = c2
a3.sinks.k1.channel = c2

启动Agent1

shell 复制代码
$FLUME_HOME/bin/flume-ng agent --name a3 \
--conf-file ~/conf/flume-avro-file.conf \
-Dflume.root.logger=INFO,console &

启动Agent2

shell 复制代码
$FLUME_HOME/bin/flume-ng agent --name a2 \
--conf-file ~/conf/flume-avro-hdfs.conf \
-Dflume.root.logger=INFO,console &

启动Agent3

shell 复制代码
$FLUME_HOME/bin/flume-ng agent --name a1 \
--conf-file ~/conf/flume-taildir-avro.conf \
-Dflume.root.logger=INFO,console &

Hive测试

shell 复制代码
hive -e "show databases;"
相关推荐
luoganttcc1 小时前
[源码解析] 模型并行分布式训练Megatron (2) --- 整体架构
分布式·架构·大模型
007php0075 小时前
linux服务器上CentOS的yum和Ubuntu包管理工具apt区别与使用实战
linux·运维·服务器·ubuntu·centos·php·ai编程
神秘打工猴6 小时前
Flink 集群有哪些⻆⾊?各⾃有什么作⽤?
大数据·flink
小刘鸭!6 小时前
Flink的三种时间语义
大数据·flink
天冬忘忧6 小时前
Flink优化----FlinkSQL 调优
大数据·sql·flink
LinkTime_Cloud6 小时前
GitLab 将停止为中国区用户提供服务,60天迁移期如何应对? | LeetTalk Daily
大数据·运维·gitlab
qq_429856576 小时前
linux 查看服务是否开机自启动
linux·运维·服务器
就爱学编程6 小时前
重生之我在异世界学编程之C语言:数据在内存中的存储篇(下)
java·服务器·c语言
寒暄喆意7 小时前
智慧农业物联网传感器:开启农业新时代
大数据·人工智能·科技·物联网
m0_548503037 小时前
Flink基本原理 + WebUI说明 + 常见问题分析
大数据·flink