排序——数据结构与算法 总结8

目录

[8.1 排序相关概念](#8.1 排序相关概念)

[8.2 插入排序](#8.2 插入排序)

[8.2.1 直接插入排序:](#8.2.1 直接插入排序:)

[8.2.2 折半插入排序:](#8.2.2 折半插入排序:)

[8.2.3 希尔排序:](#8.2.3 希尔排序:)

[8.3 交换排序](#8.3 交换排序)

[8.3.1 冒泡排序:](#8.3.1 冒泡排序:)

[8.3.2 快速排序:](#8.3.2 快速排序:)

[8.4 选择排序](#8.4 选择排序)

[8.4.1 简单选择排序](#8.4.1 简单选择排序)

[8.4.2 堆排序](#8.4.2 堆排序)

[8.5 归并排序](#8.5 归并排序)

[8.6 排序算法复杂度](#8.6 排序算法复杂度)


8.1 排序相关概念

  • 排序码:排序的依据,也称关键码
  • 排序是对线性结构的一种操作
  • 排序算法的稳定性:假定在待排序的记录序列中存在多个具有相同关键码的记录,若经过排序,这些记录的相对次序保持不变,则称这种排序算法稳定,否则为不稳定。
  • 根据排序过程中所有记录是否全部放在内存中,排序方法分为

(1) 内排序:过程中,待排序的所有记录全部放在内存中

(2) 外排序:过程中,需要在内外存之间交换数据

  • 根据排序方法是否建立在关键码比较的基础上,排序方法分为:

(1) 基于比较:通过关键码之间的比较和记录的移动实现。(包括插入排序、交换排序、选择排序和归并排序)

(2) 不基于比较:根据待排序数据的特点所采取的其他方法。(基数排序)

8.2 插入排序

8.2.1 直接插入排序:

基本思路:有将数组分为有序区和无序区,初始时有序区只有一个元素,将无序区的元素一个一个插入有序区,直到所有元素都在有序区内。

python 复制代码
# 直接插入排序
def InsertSort(R):
    for i in range(1,len(R)):
        if R[i]<R[i-1]:
            temp = R[i]  # 取出无序区的第一个元素
            j = i-1  # 前面都是有序的,在有序区中找插入的位置
            while True:
                R[j+1] = R[j]  # 将大于temp的元素后移,空出一个插入的位置
                j-=1
                if j<0 or R[j]<=temp:
                    break
            R[j+1] = temp
    return R

8.2.2 折半插入排序:

折半插入排序和直接插入排序思路差不多,不过在将无序区元素插入有序区时用折半的方法插入。只是优化了插入的部分。

8.2.3 希尔排序:

基本思路:先将整个待排序记录序列分隔成若干个子序列,在子序列内分别进行直接插入排序,待整个序列基本有序后,再对整体记录进行一次直接插入排序。

步骤:

(1) 相邻d个位置的元素分为一组,d=n/2(d是增量)

(2) 将排序序列分为d个组,在各组内进行直接插入排序

(3) 递减d=d/2,重复第二步,直到d=0为止

希尔算法的时间复杂度难以分析,一般认为其平均时间复杂度为O(n1.58)。希尔排序的速度通常要比直接插入排序快。

希尔排序是一种不稳定的排序算法

8.3 交换排序

8.3.1 冒泡排序:

基本思路:两个元素反序时进行交换

冒小泡:从后往前看,如果后面的比前面的小就交换。

若某一趟没有出现元素交换,说明所有元素已排好序了。

python 复制代码
# 冒泡排序
def BubbleSort(R):
    for i in range(len(R)-1):
        exchange = False
        for j in range(len(R)-1,i,-1):
            if R[j]<R[j-1]:
                R[j],R[j-1] = R[j-1],R[j]
                exchange=True
        if exchange == False:
            return R

8.3.2 快速排序:

先选择一个基准(一般是第一个元素),将待排序记录划分为两部分,左侧关键码小于基准,右侧关键码大于基准,将基准值与左侧最后一个值交换位置,使得基准值在中间。然后分别对左右部分重复上述过程,直到排好。

【例题】

快速排序过程可以用递归树表示

python 复制代码
#快速排序
def quickSort(lst,l,r):
    if r<=l:
        return
    q = partition(A,l,r)
    quickSort(A,l,q-1)
    quickSort(A,q+1,r)

def partition(A,l,r): #将元素进行随机划分
    p = randint(A[l],A[r])
    A[p],A[r] = A[r],A[p]
    i = l
    for j in range(l,r-1):
        if A[j]<=A[r]:
            A[i],A[j] = A[j],A[i]
            i+=1
    A[i],A[r] = A[r],A[i]
    return i

8.4 选择排序

8.4.1 简单选择排序

分为无序区和有序区,每趟在无序区中选出最小的记录minj,将minj和有序区后一个数字交换

是一种不稳定的排序方法

python 复制代码
# 简单选择排序
def SelectSort(R):
    for i in range(len(R)-1):
        minj = i
        for j in range(i+1,len(R)):
            if R[j]<R[minj]:  # 从无序区选最小元素
                minj = j
        if minj!=i:
            R[i],R[minj] = R[minj],R[i]

8.4.2 堆排序

堆是完全二叉树

堆的存储是顺序的

堆的定义:大根堆,小根堆

大根堆:父结点的关键字大于子结点的关键字

步骤:

(1)根据序列用广度优先构建一个完全二叉树,上滤(自底向上)调整为大根堆

(2)输出堆顶元素,然后用堆尾元素代替堆顶

(3)从根节点筛选,使其形成一个堆(此时的根节点就是之前的堆尾元素)

筛选:将根节点与左右孩子的较大者进行交换,一直进行到所有子树均为堆或将调整结点交换到叶子位置。

(4)重复二三步骤(n-1次),得到有序序列

【例题】

8.5 归并排序

基础思路:将两个位置相邻的有序子序列归并为一个有序序列

归并要做 趟,每趟归并时间为O(n)

python 复制代码
#归并排序,给列表A中下标从l到r的区间排序
def mergeSort(A,l,r):
    if r-l<=1:#边界条件处理
        return
    mid = (l+r)//2
    mergeSort(A,l,mid)#递归调用
    mergeSort(A,mid,r)
    merge(A,l,mid,r)#递推到当前层

def merge(A,l,mid,r): #合并数组A[l,m-1]和A[m,r-1]
    l = A[l,mid-1]
    r = A[mid,r-1]
    k = 0
    i = 0
    j = 0
    while k<=r-l:
        if l[i]<=r[j]:
            i +=1
            A[K] = l[i]
        else:
            A[K] = r[j]
            j+=1
        k+=1

8.6 排序算法复杂度

基于比较排序算法的平均时间复杂度不可能优于

相关推荐
LDG_AGI4 分钟前
【推荐系统】深度学习训练框架(九):推荐系统与LLM在Dataset、Tokenizer阶段的异同
人工智能·深度学习·算法·机器学习·推荐算法
爪哇部落算法小助手9 分钟前
每日两题day61
数据结构·c++·算法
Swift社区9 分钟前
LeetCode 439 - 三元表达式解析器
算法·leetcode·ssh
小殊小殊10 分钟前
重磅!DeepSeek发布V3.2系列模型!
论文阅读·人工智能·算法
裤裤兔11 分钟前
利用matlab进行FDR校正的实现方式
数据结构·算法·matlab·多重比较矫正·校正·fdr
野蛮人6号11 分钟前
力扣热题100道之31下一个排列
算法·leetcode·职场和发展
子一!!12 分钟前
哈希桶,元素插入逻辑实现
算法·哈希算法
敲代码的嘎仔12 分钟前
LeetCode面试HOT100——160. 相交链表
java·学习·算法·leetcode·链表·面试·职场和发展
吃着火锅x唱着歌12 分钟前
LeetCode 454.四数相加II
算法·leetcode·职场和发展
敲代码的嘎仔14 分钟前
LeetCode面试HOT100—— 206. 反转链表
java·数据结构·学习·算法·leetcode·链表·面试