KKT条件

KKT条件(Karush--Kuhn--Tucker conditions),约束优化问题的一阶必要条件。

问题

考虑一般约束优化问题
min ⁡ f ( x ) , s.t. c i ( x ) = 0 , i ∈ E , c i ( x ) ⩾ 0 , i ∈ I , \begin{aligned} \min & f(x), \\ \text { s.t. } & c_{i}(x)=0, i \in \mathcal{E}, \\ & c_{i}(x) \geqslant 0, i \in \mathcal{I}, \end{aligned} min s.t. f(x),ci(x)=0,i∈E,ci(x)⩾0,i∈I,

其中, x ∈ R n x \in \mathbb{R}^{n} x∈Rn, f ( x ) ∈ R f(x) \in \mathbb{R} f(x)∈R 为目标函数, c i ( x ) = 0 ( i ∈ E ) 和 c i ( x ) ⩾ 0 ( i ∈ I ) c_{i}(x)=0(i \in \mathcal{E})和 c_{i}(x) \geqslant 0(i \in \mathcal{I}) ci(x)=0(i∈E)和ci(x)⩾0(i∈I)分别为等式约束与不等式约束, E = { 1 , ⋯   , m e } 和 I = { m e + 1 , ⋯   , m } \mathcal{E}=\left\{1, \cdots, m_{e}\right\} 和 \mathcal{I}=\left\{m_{e}+1, \cdots, m\right\} E={1,⋯,me}和I={me+1,⋯,m}分别为等式约束集合和不等式约束集合。

表达式

若 x ∗ x^* x∗为局部最优解,则存在 Lagrange 乘子 λ ∗ ∈ R m \lambda^{*} \in \mathbb{R}^{m} λ∗∈Rm, 使得 x ∗ , λ ∗ x^{*}, \lambda^{*} x∗,λ∗ 满足如下条件:
∇ x L ( x ∗ , λ ∗ ) = 0 ⟹ g ( x ∗ ) = ∑ i = 1 m λ i ∗ a i ( x ∗ ) 梯度条件 c i ( x ∗ ) = 0 , i ∈ E , 原始可行 c i ( x ∗ ) ⩾ 0 , i ∈ I , 原始可行 λ i ∗ ⩾ 0 , i ∈ I , 对偶可行 λ i ∗ c i ( x ∗ ) = 0 , i ∈ E ∪ I , 互补条件 \begin{aligned} & \nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0 \Longrightarrow g\left(x^{*}\right)=\sum_{i=1}^{m} \lambda_{i}^{*} a_{i}\left(x^{*}\right) &\text { 梯度条件} \\ & c_{i}\left(x^{*}\right)=0, i \in \mathcal{E},&\text { 原始可行 } \\ & c_{i}\left(x^{*}\right) \geqslant 0, i \in \mathcal{I},&\text { 原始可行 } \\ & \lambda_{i}^{*} \geqslant 0, \quad i \in \mathcal{I}, &\text { 对偶可行 } \\ & \lambda_{i}^{*} c_{i}\left(x^{*}\right)=0, \quad i \in \mathcal{E} \cup \mathcal{I}, \quad &\text { 互补条件 } \\ \end{aligned} ∇xL(x∗,λ∗)=0⟹g(x∗)=i=1∑mλi∗ai(x∗)ci(x∗)=0,i∈E,ci(x∗)⩾0,i∈I,λi∗⩾0,i∈I,λi∗ci(x∗)=0,i∈E∪I, 梯度条件 原始可行 原始可行 对偶可行 互补条件

其中, L L L是Lagrange函数满足
L ( x , λ ) = f ( x ) − ∑ i = 1 m λ i c i ( x ) L(x, \lambda)=f(x)-\sum_{i=1}^{m} \lambda_{i} c_{i}(x) L(x,λ)=f(x)−i=1∑mλici(x)

相关推荐
serve the people4 分钟前
神经网络中梯度计算求和公式求导问题
神经网络·算法·机器学习
云卓SKYDROID5 分钟前
无人机投屏技术解码过程详解!
人工智能·5g·音视频·无人机·科普·高科技·云卓科技
zy_destiny12 分钟前
【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点,含创新点Python代码,方便发论文
网络·人工智能·python·深度学习·yolo·计算机视觉·三重注意力
自由的晚风13 分钟前
深度学习在SSVEP信号分类中的应用分析
人工智能·深度学习·分类
大数据追光猿14 分钟前
【大模型技术】LlamaFactory 的原理解析与应用
人工智能·python·机器学习·docker·语言模型·github·transformer
玩电脑的辣条哥29 分钟前
大模型LoRA微调训练原理是什么?
人工智能·lora·微调
极客BIM工作室35 分钟前
DeepSeek V3 源码:从入门到放弃!
人工智能
神秘的土鸡1 小时前
如何在WPS中接入DeepSeek并使用OfficeAI助手(超细!成功版本)
人工智能·机器学习·自然语言处理·数据分析·llama·wps
fydw_7151 小时前
PreTrainedModel 类代码分析:_load_pretrained_model
人工智能·pytorch
Panesle1 小时前
bert模型笔记
人工智能·笔记·bert