KKT条件

KKT条件(Karush--Kuhn--Tucker conditions),约束优化问题的一阶必要条件。

问题

考虑一般约束优化问题
min ⁡ f ( x ) , s.t. c i ( x ) = 0 , i ∈ E , c i ( x ) ⩾ 0 , i ∈ I , \begin{aligned} \min & f(x), \\ \text { s.t. } & c_{i}(x)=0, i \in \mathcal{E}, \\ & c_{i}(x) \geqslant 0, i \in \mathcal{I}, \end{aligned} min s.t. f(x),ci(x)=0,i∈E,ci(x)⩾0,i∈I,

其中, x ∈ R n x \in \mathbb{R}^{n} x∈Rn, f ( x ) ∈ R f(x) \in \mathbb{R} f(x)∈R 为目标函数, c i ( x ) = 0 ( i ∈ E ) 和 c i ( x ) ⩾ 0 ( i ∈ I ) c_{i}(x)=0(i \in \mathcal{E})和 c_{i}(x) \geqslant 0(i \in \mathcal{I}) ci(x)=0(i∈E)和ci(x)⩾0(i∈I)分别为等式约束与不等式约束, E = { 1 , ⋯   , m e } 和 I = { m e + 1 , ⋯   , m } \mathcal{E}=\left\{1, \cdots, m_{e}\right\} 和 \mathcal{I}=\left\{m_{e}+1, \cdots, m\right\} E={1,⋯,me}和I={me+1,⋯,m}分别为等式约束集合和不等式约束集合。

表达式

若 x ∗ x^* x∗为局部最优解,则存在 Lagrange 乘子 λ ∗ ∈ R m \lambda^{*} \in \mathbb{R}^{m} λ∗∈Rm, 使得 x ∗ , λ ∗ x^{*}, \lambda^{*} x∗,λ∗ 满足如下条件:
∇ x L ( x ∗ , λ ∗ ) = 0 ⟹ g ( x ∗ ) = ∑ i = 1 m λ i ∗ a i ( x ∗ ) 梯度条件 c i ( x ∗ ) = 0 , i ∈ E , 原始可行 c i ( x ∗ ) ⩾ 0 , i ∈ I , 原始可行 λ i ∗ ⩾ 0 , i ∈ I , 对偶可行 λ i ∗ c i ( x ∗ ) = 0 , i ∈ E ∪ I , 互补条件 \begin{aligned} & \nabla_{x} L\left(x^{*}, \lambda^{*}\right)=0 \Longrightarrow g\left(x^{*}\right)=\sum_{i=1}^{m} \lambda_{i}^{*} a_{i}\left(x^{*}\right) &\text { 梯度条件} \\ & c_{i}\left(x^{*}\right)=0, i \in \mathcal{E},&\text { 原始可行 } \\ & c_{i}\left(x^{*}\right) \geqslant 0, i \in \mathcal{I},&\text { 原始可行 } \\ & \lambda_{i}^{*} \geqslant 0, \quad i \in \mathcal{I}, &\text { 对偶可行 } \\ & \lambda_{i}^{*} c_{i}\left(x^{*}\right)=0, \quad i \in \mathcal{E} \cup \mathcal{I}, \quad &\text { 互补条件 } \\ \end{aligned} ∇xL(x∗,λ∗)=0⟹g(x∗)=i=1∑mλi∗ai(x∗)ci(x∗)=0,i∈E,ci(x∗)⩾0,i∈I,λi∗⩾0,i∈I,λi∗ci(x∗)=0,i∈E∪I, 梯度条件 原始可行 原始可行 对偶可行 互补条件

其中, L L L是Lagrange函数满足
L ( x , λ ) = f ( x ) − ∑ i = 1 m λ i c i ( x ) L(x, \lambda)=f(x)-\sum_{i=1}^{m} \lambda_{i} c_{i}(x) L(x,λ)=f(x)−i=1∑mλici(x)

相关推荐
小黄人软件10 分钟前
【AI协作】让所有用电脑的场景都能在ChatGPT里完成。Canvas :新一代可视化交互,让AI易用易得
人工智能·chatgpt·canvas
知来者逆22 分钟前
基于集成Whisper 与 Pepper-GPT改进人机交互体验并实现顺畅通信
人工智能·gpt·语言模型·自然语言处理·whisper·人机交互
摆烂仙君25 分钟前
《Probing the 3D Awareness of Visual Foundation Models》论文解析——单图像表面重建
人工智能·深度学习·计算机视觉
摆烂仙君27 分钟前
《Probing the 3D Awareness of Visual Foundation Models》论文解析——多视图一致性
人工智能·深度学习
Elastic 中国社区官方博客1 小时前
Elasticsearch retrievers 通常与 Elasticsearch 8.16.0 一起正式发布!
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
LKID体1 小时前
ChatGPT提问prompt范例模板
人工智能·chatgpt·prompt
MinIO官方账号2 小时前
使用 Prompt API 与您的对象聊天
人工智能
爱喝矿泉水的猛男2 小时前
Prompt设计技巧和高级PE
java·人工智能·prompt·cot·tot·pe·ape
Java Fans3 小时前
深入探索R语言在机器学习中的应用与实践
开发语言·机器学习·r语言