① 输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的 均方误差的差额 将被用来作为 特征选择的标准,这种方法通过使用 叶子节点的均值来 最小化 L2损失。
② 输入"friedman_mse",使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差。
③ 输入"mae"使用绝对平均误差MAE (mean absolute error),这种指标使用叶节点的中值来 最小化 L1损失。
3. tree.export_graphviz(将生成的决策树导出为DOT格式,画图专用)
4. 其他(补充)
① 信息熵的计算比基尼系数缓慢一些 ,因为基尼系数的计算不涉及对数。另外,因为信息熵对不纯度更加敏感,所以信息熵作为指标时,决策树的生长会更加"精细",因此对于高维数据或者噪音很多的数据,信息熵很容易过拟合,基尼系数在这种情况下效果往往比较好。
② random_state用来设置分枝中的随机模式的参数,默认None,在高维度时随机性会表现更明显,低维度的数据(比如鸢尾花数据集),随机性几乎不会显现。输入任意整数,会一直长出同一棵树,让模型稳定下来。
③ splitter也是用来控制决策树中的随机选项的,有两种输入值,输入"best",决策树在分枝时虽然随机,但是还是会优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看),输入"random",决策树在分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。