OpenCV:python图像旋转,cv2.getRotationMatrix2D 和 cv2.warpAffine 函数

前言

仅供个人学习用,如果对各位朋友有参考价值,给个赞或者收藏吧 ^_^

一. cv2.getRotationMatrix2D(center, angle, scale)

1.1 参数说明

|----------------|--------------------------------------------------------------------------------------------|
| parameters | center:旋转中心坐标,是一个元组参数(col, row) angle:旋转角度,旋转方向,负号为逆时针,正号为顺时针 scale:旋转后图像相比原来的缩放比例,1为等比例缩放 |
| returns | 返回一个2*3的旋转(变换)矩阵,因为变换矩阵第三行形式固定,所以忽略。 |

returns:返回下面的2*3行列式,注:α=cosθ,β=sinθ

还是不太懂的话参考:cv2.getRotationMatrix2D的旋转矩阵的正确形式-CSDN博客

二、cv2.warpAffine(src, M, dsize, dst, flags, borderMode, borderValue)

2.1 参数说明

|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| parameters | src:原始图像。 dst:输出图像。 M:变换矩阵,这里是由getRotationMatrix2D生成的旋转矩阵。 dsize:输出图像的大小。 flags:插值方法,通常使用INTER_LINEAR(线性插值)。 borderMode:边界像素模式。 borderValue:边界填充值,用于边界外的像素。 |
| returns | 返回旋转后的图像 |

2.2 flags 值说明

三、举例

3.1 demo

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('E:/Desktop/jianli/lenna.png')
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
(h, w) = img.shape[:2]
print('原图像的高和宽', h, w)
(cX, cY) = (w // 2, h // 2)
M = cv.getRotationMatrix2D((cX, cY), -45, 1.0)
print('旋转矩阵:\n', M)
rotate0 = cv.warpAffine(src=img, M=M, dsize=(h, w))
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
nH = int((h*cos) + (w*sin))
nW = int((h*sin) + (w*cos))
print('新图像的高和宽', nH, nW)
rotate1 = cv.warpAffine(img, M, (nW, nH))
# 调整旋转矩阵的中心以平移到中心显示全图
M[0, 2] += (nW/2) - cX
M[1, 2] += (nH/2) - cY
rotate2 = cv.warpAffine(img, M, (nW, nH))
print('中心点平移后的旋转矩阵:\n', M)
# 显示图像
plt.subplot(1, 3, 1), plt.imshow(rotate0, 'gray'), plt.title('rotate0')
plt.subplot(1, 3, 2), plt.imshow(rotate1, 'gray'), plt.title('rotate1')
plt.subplot(1, 3, 3), plt.imshow(rotate2, 'gray'), plt.title('rotate2')
plt.show()

3.1.1 新图像的高和宽计算

计算经过仿射变换或旋转后新图像的宽度和高度,尤其是在旋转图像时保持图像的完整性而不裁剪任何部分,需要一些几何计算。

看了以下图就能知道为啥子这么计算啦

nH = int((h*cos) + (w*sin))

nW = int((h*sin) + (w*cos))

3.2 output

相关推荐
KG_LLM图谱增强大模型2 分钟前
[150页最新PPT]深度解析大模型与知识图谱的融合范式,通往AGI的必由之路?
人工智能·大模型·知识图谱·agi
龙亘川6 分钟前
AI 赋能智慧农业:核心技术、应用案例与学习路径全解析
人工智能·学习
过期的秋刀鱼!17 分钟前
week3-机器学习-逻辑回归模型介绍和决策边界
人工智能·机器学习·逻辑回归
38242782718 分钟前
python3网络爬虫开发实战 第二版:绑定回调
开发语言·数据库·python
好奇龙猫24 分钟前
【AI学习-comfyUI学习-第二十一-LMSD线段预处理器(建筑概念设计图)-各个部分学习】
人工智能·学习
启途AI25 分钟前
实测国内支持Nano Banana pro的ai工具,解锁PPT可编辑新体验!
人工智能·powerpoint·ppt
WitsMakeMen25 分钟前
大语言模型要用分组注意力机制GQA
人工智能·语言模型·自然语言处理
Godspeed Zhao28 分钟前
自动驾驶中的传感器技术84——Sensor Fusion(7)
人工智能·机器学习·自动驾驶
dagouaofei28 分钟前
培训项目总结 PPT 工具对比评测,哪款更专业
python·powerpoint
Hello eveybody28 分钟前
用代码生成你的电影预告片(Python)
python