OpenCV:python图像旋转,cv2.getRotationMatrix2D 和 cv2.warpAffine 函数

前言

仅供个人学习用,如果对各位朋友有参考价值,给个赞或者收藏吧 ^_^

一. cv2.getRotationMatrix2D(center, angle, scale)

1.1 参数说明

|----------------|--------------------------------------------------------------------------------------------|
| parameters | center:旋转中心坐标,是一个元组参数(col, row) angle:旋转角度,旋转方向,负号为逆时针,正号为顺时针 scale:旋转后图像相比原来的缩放比例,1为等比例缩放 |
| returns | 返回一个2*3的旋转(变换)矩阵,因为变换矩阵第三行形式固定,所以忽略。 |

returns:返回下面的2*3行列式,注:α=cosθ,β=sinθ

还是不太懂的话参考:cv2.getRotationMatrix2D的旋转矩阵的正确形式-CSDN博客

二、cv2.warpAffine(src, M, dsize, dst, flags, borderMode, borderValue)

2.1 参数说明

|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| parameters | src:原始图像。 dst:输出图像。 M:变换矩阵,这里是由getRotationMatrix2D生成的旋转矩阵。 dsize:输出图像的大小。 flags:插值方法,通常使用INTER_LINEAR(线性插值)。 borderMode:边界像素模式。 borderValue:边界填充值,用于边界外的像素。 |
| returns | 返回旋转后的图像 |

2.2 flags 值说明

三、举例

3.1 demo

python 复制代码
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

img = cv.imread('E:/Desktop/jianli/lenna.png')
img = cv.cvtColor(img, cv.COLOR_BGR2RGB)
(h, w) = img.shape[:2]
print('原图像的高和宽', h, w)
(cX, cY) = (w // 2, h // 2)
M = cv.getRotationMatrix2D((cX, cY), -45, 1.0)
print('旋转矩阵:\n', M)
rotate0 = cv.warpAffine(src=img, M=M, dsize=(h, w))
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
nH = int((h*cos) + (w*sin))
nW = int((h*sin) + (w*cos))
print('新图像的高和宽', nH, nW)
rotate1 = cv.warpAffine(img, M, (nW, nH))
# 调整旋转矩阵的中心以平移到中心显示全图
M[0, 2] += (nW/2) - cX
M[1, 2] += (nH/2) - cY
rotate2 = cv.warpAffine(img, M, (nW, nH))
print('中心点平移后的旋转矩阵:\n', M)
# 显示图像
plt.subplot(1, 3, 1), plt.imshow(rotate0, 'gray'), plt.title('rotate0')
plt.subplot(1, 3, 2), plt.imshow(rotate1, 'gray'), plt.title('rotate1')
plt.subplot(1, 3, 3), plt.imshow(rotate2, 'gray'), plt.title('rotate2')
plt.show()

3.1.1 新图像的高和宽计算

计算经过仿射变换或旋转后新图像的宽度和高度,尤其是在旋转图像时保持图像的完整性而不裁剪任何部分,需要一些几何计算。

看了以下图就能知道为啥子这么计算啦

nH = int((h*cos) + (w*sin))

nW = int((h*sin) + (w*cos))

3.2 output

相关推荐
Cachel wood27 分钟前
python round四舍五入和decimal库精确四舍五入
java·linux·前端·数据库·vue.js·python·前端框架
IT古董28 分钟前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比28 分钟前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
終不似少年遊*33 分钟前
pyecharts
python·信息可视化·数据分析·学习笔记·pyecharts·使用技巧
Python之栈34 分钟前
【无标题】
数据库·python·mysql
m0_748232921 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
袁袁袁袁满1 小时前
100天精通Python(爬虫篇)——第113天:‌爬虫基础模块之urllib详细教程大全
开发语言·爬虫·python·网络爬虫·爬虫实战·urllib·urllib模块教程
szxinmai主板定制专家1 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
海棠AI实验室1 小时前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习